下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Cache的低功耗相关研究以及可重构系统是怎样设计的随着集成电路的工作速度和芯片集成度不断提高,芯片的功耗问题变得越来越突出,高性能低功耗设计已经成为当前集成电路领域的一个重要课题。在以微处理器为核心部件的VLS1系统中,Cache是系统取得高数据传输率的关键部件。在现代CPU中,Cache的功耗约占处理器总功耗的30%~60%,有效降低这部分的功耗,对芯片的低功耗设计有着重大的意义。1Cache低功耗相关研究Cache平均访问功耗是Cache性能表现的一个重要因素。Cache平均访问功耗由Cache命中时的访问功耗、失效时的访问功耗和失效率三者决定。失效时的访问功耗又包括两部分:一部分是Cache失效时Cache电路的功耗,另一部分则是下一级存储系统的访问功耗。因此降低Cache功耗可以从三个方面考虑:一是降低Cache的失效率,二是降低Cache访问能量,三是降低主存访问能量。为了达到低功耗的目的,对Cache结构做了一些改进:Phase—lookupCache结构,应用两级查询的机制,即先访问tagarray,只有命中的那一路data才会在第二相去访问,这样就降低了组相联Cache中数据array部分的功耗,但增加了Cache访问的时间;WaypredicTIve组相联Cache结构,在默认情况下只访问一个tagarray和一个dataarray,只有在默认访问失效时才会去访问其他的tag和dataarray,这种方法也以增加Cache访问时间的代价来换取低功耗;伪组相联Cache结构,是具有多个命中时间的Cache结构,Cache中的每一路可以被顺序读取,从而可以比传统的同时读取结构节省一部分功耗;另外还有基于压缩方法方面的研究,针对高频值的局部性,在读写Cache的过程中,对高频出现的数据值进行压缩存储,用较少存储空间保存编码后的数据,在一定程度上减少了Cache的访问功耗。低功耗可重构的Cache研究在最近几年得到关注,通过改变Cache的结构参数,不管是用硬件实现还是用软件实现,针对不同的程序来配置优化的Cache结构,尽可能地关闭不使用的Cache,兼顾了系统的性能和功耗。Cache的结构参数很多,主要的参数有容量大小、相联度、块大小、替换算法、写回策略等。一般而言,系统中的Cache替换算法和写策略是固定的,如果改变也可以在软件层面上实现。所以主要关注Cache的硬件结构是否可重构,仅研究其中几个参数(如Cache容量、块大小和相联度)对访问功耗的影响。在设计芯片之前可以使用CAD工具来确定对命中时间和功耗的影响。CACTI程序是一个可以评估CMOS微处理器各种Cache结构访问时间和功耗的CAD工具。对于一个给定的最小特征值,可以改变Cache容量、相联度和读/写端口的数目,以估计各种情况的Cache命中时间和功耗。可重构Cache结构需要综合考虑Cache的命中率、平均访问时间和访问能量等性能,合理选择Cache的配置参数。2可重构Cache的体系结构要实现可重构Cache,首先Cache的结构要支持运行过程中的动态划分,其次要有检测Cache命中率的硬件或者软件机制,并且有相应的动态配置算法。2.1可重构Cache系统设计文献提出了一种可重构的数据Cache结构。该Cache的数据区被平均分为4个子分区(subarray),每个子分区又分为4组。在Cache访问时,只有一个子分区打开,其他子分区的线路不被激活,从而节省了功耗。图1给出了整个Cache体系结构及功能模块。与传统Cache结构相比,图1中增加了Cache配置动态选择器(CacheConfigurationDynamicSelector,CCDS),CCDS用来更新内部状态机,并决定合适的Cache配置。通过配置CCDS,可以使整个子阵列无效,或者使有效子阵列中的某些路无效。对于无效的子阵列或者路,局部自选线(LocalWordLine)、预充电(Precharge)和读出放大器(SenseAmplifier)都无激励。通过这些改进使得传统的固定划分的Cache具备了动态配置能力。改进后的Cache外在表现为一个虚拟的两级Cache:Ll/L2。这种分级方式同传统的L1/L2两级Cache结构不同,L1Cache由激活的不同子分区以及子分区内不同的路数构成,未激活的部分为L2,在L1未命中时激活以进行访问,L1和L2在物理实现上表现为同一级。Cache的地址划分仍为三部分:标志位、索引位和块内地址。图2给出了Cache的地址划分情况,可分为块地址(BlockAddress)和块内偏移(Blockoffset)。块地址可以进一步分为标志字段(Tag)和索引字段(Index)。其中Tag的后两位SS用来做子分区的选择位。访问Cache时,首先访问L1,当L1命中时就直接返回,只有在L1访问失效时才会将所有数据区打开。对不同的应用程序,L1和L2大小的划分不同,其访闽时间和运行功耗也会有较大差异。2.2动态重构算法在程序运行过程中,通过软件监测自动选择优化的Cache结构。一般采用启发式算法,即根据程序过去执行的状况预测未来的运行情况,并为其配置相应的优化结构。重构流程是:在程序运行的时候,CPU按固定的时间间隔检查一系列的硬件计数器;这些计数器记录上一时间段内的Cache缺失率和分支跳转的发生频率,如果改变的程度超过设定阈值则进入重构过程,否则程序继续运行。图3是可重构算法的状态图。RESET为程序开始运行时的初始状态;UNSTABLE为非稳定状态,该状态下进行结构的搜索与重构;STABLE为选择好优化的Cache结构进入稳定运行的状态;TRANSl,TRANS2为状态相互切换时的中间状态。图4是在UNSTABLE状态下的搜索流程。首先根据统计将各种配置的Cache结构按照失效率进行排序。进入重构搜索状态后,如果引起重构的原因是失效率的上升,则沿着排序表开始,朝失效率降低的方向依次搜索新的Cache结构。如果引起重构的原因是程序分支频率的改变,则需要搜索所有的Cache结构。2.3可重构Cache中问题(1)数据重名问题Cache中的数据重名问题是指主存中同一地址的数据同时出现在Cache中两个不同的位置。实地址Cache中本来不存在数字重名问题,但引入可重构概念的同时,也带来了数据重名问题。解决这一问题的简单办法是在Cache重构的时候让Cache中的内容全部无效,需要写回的内容都进行写回。但这样会导致Cache性能下降,特别是在Cache重构比较频繁的时候。但是如果动态重构的指令片段较大,则影响比较小。(2)映射错误问题Cache在重构时,其组数量会变化,从而导致需要比较的Tag位的数量也发生变化,这会导致映射错误的出现。为了保证处于任何一种状态的时候都有足够的Tag来做比较,按照Tag位最长的一种配置来保存Cache地址结构,也就是组数量最少的情况。这样做虽然会增加一些无用的比较,但却能避免刷新Cache带来的性能损失。结论本文在传统Cache结构的基础上分析了一种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年销售员绩效考核与奖惩制度劳务用工协议3篇
- 建筑工程供货合同
- 2025年校园运动场地设施采购及施工合同2篇
- 机房优先施工方案
- 二零二五年度5G通信技术应用合同4篇
- 2025年度个人旅游规划师雇佣服务协议4篇
- 二零二五版美发店合伙人创业投资合作合同4篇
- 齿轮锻件课程设计
- 课课程设计要写哪几步
- 基础土方回填施工方案
- 餐饮行业智慧餐厅管理系统方案
- 2025年度生物医药技术研发与许可协议3篇
- 电厂检修安全培训课件
- 殡葬改革课件
- 2024企业答谢晚宴会务合同3篇
- 双方个人协议书模板
- 车站安全管理研究报告
- 玛米亚RB67中文说明书
- 中华人民共和国文物保护法
- 五年级数学(小数四则混合运算)计算题专项练习及答案
- NB_T 10533-2021 采煤沉陷区治理技术规范_(高清最新)
评论
0/150
提交评论