C4对人体轮廓检测的精度的实验分析与实验结果_第1页
C4对人体轮廓检测的精度的实验分析与实验结果_第2页
C4对人体轮廓检测的精度的实验分析与实验结果_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

C4对人体轮廓检测的精度的实验分析与实验结果摘要

本文提出了一种实时并且精准的人体检测架构C4。C4在目前最高精确度下可以达到20帧每秒的检测速度,并且是在只使用一个处理线程和不使用GPU等硬件的情况下达到的。能达到实时而精确的检测源于以下两点:第一,相邻像素差值的符号是描述轮廓的关键信息;第二,CENTRIST描述子非常适合做人体检测,因为它编码了符号信息并且可以隐式地表达全局轮廓。使用CENTRIST描述子和线性分类器,我们提出了一种不需要显式生成特征向量的计算方法,它不需要图像的预处理或特征向量的归一化,只需要O(1)时间去测试一个图片区域。C4也非常适合进一步的硬件加速,我们在一个嵌入式的1.2GHzCPU上同样实现了20fps的高速人体检测。Ⅰ引言人体检测在生活中应用广泛:监控系统和机场安全,自动驾驶和驾驶辅助系统,人机交互,互动娱乐,智能家庭和老人辅助,军方的寻人应用等。广泛的应用和挑战吸引了很多研究者参与到其中来。本文的目的是以最少的误报率进行实时而精确的人体检测。在机器人系统上,计算效率尤其重要,不仅要达到实时的检测,还要做的占用尽量少的CPU资源,使得其他任务例如路径规划、导航等不会受到影响。目前的人体检测在很多方面已经达到问题的前沿,例如:特征、分类器、速度、遮挡处理等,引文[1]~[11]做了详细论述。然而,至少还有两个重要问题没有得到解决:

(1)实时检测检测速度非常重要,因为实时检测是很多现实应用[12]的先决条件。

(2)确定最重要的信息源HOG[1]和LBP[8]特征在人体检测中取得了成功,但我们还不是很清楚的了解这些特征中最重要的信息是什么,或者说,为什么这些特征可以取得这么好的检测效果。在本文中,我们认为这两个问题是紧密相关的,我们证明合适的特征选择会带来高效的检测结果。事实上,特征计算是现有方法的主要瓶颈,现有方法即使使用GPU的100+并行处理线程,也只能达到大约10fps的检测速率。大多数时间都耗费在了特征计算上(包括图像预处理、特征构建和特征向量归一化)。本文主要解决了两个问题。第一,通过一系列精心设计的实验(见SectionⅢ-A)表明表征身体外沿的轮廓特征可以提供人体检测的重要信息。我们发现相邻像素差值的符号对于表示轮廓至关重要,但差值的大小没有符号信息重要。第二,我们提出用轮廓线索(contourcues)进行人体检测,并表示成熟的CENTRIST[13]特征非常适合人体检测(见SectionⅢ-B)。CENTRIST编码了像素差值的符号信息,并且可以表示全局(大规模)轮廓。在SectionⅢ-C中,我们将CENTRIST与其他特征进行了对比。CENTRIST特征在速度上非常吸引人,在SectionⅣ中,我们提出了一种不包括图像预处理和特征向量归一化的评价方法。事实上,没有必要显式地计算CENTRIST特征向量,因为它已经无缝的嵌入在分类器中,能够达到视频流检测速度。我们使用层级分类器,所以将此方法叫做C4:detectinghumanContourusingaCascadeClassifierandtheCENTRISTdescriptor.C4可以在不使用GPU的单线程上实现精确地实时人体监测。在SectionⅤ中,我们用两种评价方法展示实验结果,第一,在一个标准人体检测数据集上的实验结果;第二,在线检测结果,即在iRobotPackBot上的实验结果。特别的,我们还展示了基于实时行人检测的行人跟踪。我们将此检测系统提供给其他研究者使用。Ⅱ相关研究工作人体检测的精确度仍是主要研究方向,尤其是在低FPPI[2](FalsePositivePerImage)时的高检测率。在此方面的研究主要向两个方向发展:特征和分类器。人体检测中使用过各种特征,例如Haar[7],edgelet[10],然而HOG是使用最多的人体检测特征[1,3,4,6,8]。边缘在不同方向上的强度分布似乎可以有效地在图像中捕获人体。近来,LBP(LocalBinaryPatern)方法的变体也表现出很大潜力[5][8]。最近人体检测趋向于联合多种信息源,例如颜色、局部纹理、边缘、运动等等[14,6,8,15],引入更多信息通道会提高检测精度,但同时也会增加检测时间。在分类器方面,线性SVM由于速度快而被广泛使用。HIKSVM(HistogramIntersectionKernelSVM)[16][17]可以达到更高的精度,耗时有所增加[4]。最近的研究还提高了人体检测的速度。层级(cascade)[7][11]和积分图[14][8]被广泛用来加速检测。然而,检测速度仍远低于帧率,所以人们使用GPU来做并行计算,例如,[9]中的系统达到了10fps,[8]中达到了4fps,两者都使用了GPU。在SectionⅣ中,我们展示了一种可以在不使用GPU的单线程上达到20fps的方法(并且此方法非常易于做GPU加速)。表Ⅰ对比了当前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论