版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题21圆一、垂径定理及其应用【高频考点精讲】1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。2、垂径定理的推论(1)平分弦的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。3、垂径定理的应用:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。【热点题型精练】1.(2022•泸州中考)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=42,DE=4,则BC的长是()A.1 B.2 C.2 D.42.(2022•云南中考)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.713 B.1213 C.7123.(2022•荆门中考)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为()A.363 B.243 C.183 D.7234.(2022•鄂州中考)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm5.(2022•自贡中考)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为厘米.6.(2022•牡丹江中考)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC的长为.7.(2022•长沙中考)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.8.(2022•荆州中考)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).9.(2022•六盘水中考)牂牁江“余月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,如图是月亮洞的截面示意图.(1)科考队测量出月亮洞的洞宽CD约是28m,洞高AB约是12m,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径OC的长(结果精确到0.1m);(2)若∠COD=162°,点M在CD上,求∠CMD的度数,并用数学知识解释为什么“齐天大圣”点M在洞顶CD上巡视时总能看清洞口CD的情况.二、圆周角定理【高频考点精讲】1、圆周角定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。注意:圆周角必须同时满足两个条件:①顶点在圆上;②角的两条边都与圆相交。2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。推论:半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。3、解题技巧:解决圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角。【热点题型精练】10.(2022•营口中考)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.43 B.8 C.42 D.411.(2022•包头中考)如图,AB,CD是⊙O的两条直径,E是劣弧BC的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22° B.32° C.34° D.44°12.(2022•陕西中考)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44° B.45° C.54° D.67°13.(2022•巴中中考)如图,AB为⊙O的直径,弦CD交AB于点E,BC=BD,∠CDB=30°,AC=23,则A.32 B.3 C.1 14.(2022•襄阳中考)已知⊙O的直径AB长为2,弦AC长为2,那么弦AC所对的圆周角的度数等于.15.(2022•日照中考)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.16.(2022•永州中考)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.17.(2022•苏州中考)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.18.(2022•南通中考)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=22,点E在BC的延长线上,连接DE.(1)求直径BD的长;(2)若BE=52,计算图中阴影部分的面积.三、圆内接四边形的性质【高频考点精讲】1、圆内接四边形的对角互补。2、圆内接四边形的任意一个外角等于它的内对角。【热点题型精练】19.(2022•淮安中考)如图,四边形ABCD是⊙O的内接四边形,若∠AOC=160°,则∠ABC的度数是()A.80° B.100° C.140° D.160°20.(2022•株洲中考)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧DE上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115° B.118° C.120° D.125°21.(2022•锦州中考)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.22.(2022•甘肃中考)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.23.(2022•威海中考)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.四、三角形的外接圆与外心【高频考点精讲】1、外接圆定义:经过三角形的三个顶点的圆。2、外心定义:三角形外接圆的圆心是三角形三条边垂直平分线的交点。3、注意事项(1)锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部。(2)找三角形的外心,就是找三角形三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个。【热点题型精练】24.(2022•梧州中考)如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在AB上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是()A.60° B.62° C.72° D.73°25.(2022•十堰中考)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有()A.1个 B.2个 C.3个 D.4个26.(2022•杭州中考)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()A.cosθ(1+cosθ) B.cosθ(1+sinθ) C.sinθ(1+sinθ) D.sinθ(1+cosθ)27.(2022•玉林中考)如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来.28.(2022•黑龙江中考)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O上一点,∠ACB=60°,则AB的长为cm.29.(2022•凉山州中考)如图,在边长为1的正方形网格中,⊙O是△ABC的外接圆,点A,B,O在格点上,则cos∠ACB的值是.五、切线的性质【高频考点精讲】1、圆的切线垂直于经过切点的半径。2、经过圆心且垂直于切线的直线必经过切点。3、经过切点且垂直于切线的直线必经过圆心。4、切线性质的运用:由切线长定理可知,如果出现圆的切线,可以连接过切点的半径,得出垂直关系。【热点题型精练】30.(2022•深圳中考)已知三角形ABE为直角三角形,∠ABE=90°,BC为圆O切线,C为切点,CA=CD,则△ABC和△CDE面积之比为()A.1:3 B.1:2 C.2:2 D.(2−31.(2022•无锡中考)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°32.(2022•重庆中考)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3 B.4 C.33 D.4233.(2022•资阳中考)如图,△ABC内接于⊙O,AB是直径,过点A作⊙O的切线AD.若∠B=35°,则∠DAC的度数是度.34.(2022•泰州中考)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在AmB上,且与点A、B不重合.若∠P=26°,则∠C的度数为°.35.(2022•青岛中考)如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长为半径作EF,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为.36.(2022•济南中考)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.六、三角形的内切圆与内心【高频考点精讲】内切圆定义:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。2、内心定义:三角形三个内角角平分线的交点。3、任何三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形。4、三角形内心的性质(1)三角形的内心到三角形三边的距离相等。(2)三角形的内心与三角形顶点的连线平分内角。【热点题型精练】37.(2022•娄底中考)如图,等边△ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边△ABC的内心成中心对称,则圆中的黑色部分的面积与△ABC的面积之比是()A.3π18 B.318 C.338.(2022•德阳中考)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是()A.1 B.2 C.3 D.439.(2022•黔东南州中考)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是cm2.(结果用含π的式子表示)40.(2022•泰州中考)如图,△ABC中,∠C=90°,AC=8,BC=6,O为内心,过点O的直线分别与AC、AB边相交于点D、E.若DE=CD+BE,则线段CD的长为.41.(2022•宜宾中考)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.七、弧长及扇形面积计算【高频考点精讲】1、弧长计算(1)圆周长公式:C=2πR(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)2、扇形面积计算(1)圆面积公式:S=πr2(2)扇形:组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则①S扇形=πR2②S扇形=lR(其中l为扇形的弧长)(4)求阴影面积解题技巧:将不规则图形面积转化为规则图形的面积。常用方法:①直接用公式法;②和差法;③割补法。【热点题型精练】42.(2022•湖北中考)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则AD的长为()A.π B.43π C.53π 43.(2022•广西中考)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,BB′的长是()A.233π B.433π C.8344.(2022•丽水中考)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为23m,则改建后门洞的圆弧长是()A.5π3m B.8π3m C.10π3m D.(45.(2022•资阳中考)如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是()A.2π3−32 B.2π3−46.(2022•兰州中考)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()A.4.25πm2 B.3.25πm2 C.3πm2 D.2.25πm247.(2022•泰安中考)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为()A.6π﹣93 B.12π﹣93 C.6π−932 48.(2022•大连中考)如图,正方形ABCD的边长是2,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是(结果保留π).49.(2022•青海中考)如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为cm.50.(2022•黔西南州中考)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是.51.(2022•河南中考)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.52.(2022•泰州中考)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.(1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.八、圆锥的计算【高频考点精讲】1、圆锥顶点和底面圆周上任意一点的连线叫做圆锥的母线。顶点与底面圆心的连线叫圆锥的高。2、圆锥的侧面展开图为扇形,扇形的弧长等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024全新智慧城市建设投标合作协议范本下载3篇
- 2025版高考英语一轮总复习第一部分模块知识复习必修第二册Unit5Music
- 北京市房山区2024-2025学年高三语文上学期期末考试试卷
- 2024年度汽车贷款融资租赁合同模板(汽车金融业务拓展)3篇
- 湖南省益阳市资阳区九年级化学下册 第十二单元 课题2 化学元素与人体健康教学实录 新人教版
- 2024年标准版矿场开采承包协议版
- 柳州铁道职业技术学院《证据法》2023-2024学年第一学期期末试卷
- 第16课《奖励一下自己》第2课时 教学实录-2023-2024学年道德与法治二年级下册统编版
- 2024年度人才招聘与选拔专项协议3篇
- 2024年度技术服务合同:云计算平台搭建与维护15篇
- 一年级数学20以内计算练习凑十法、破十法、借十法、平十法
- 中国痔病诊疗指南(2020版)
- 创办精神病医院申请
- 国际标准《风险管理指南》(ISO31000)的中文版
- (完整版)外研版高中英语必修三单词表(带音标)
- MOOC 国际商务-暨南大学 中国大学慕课答案
- 特征值与特征向量
- 作家协会2024年下半年工作计划3篇
- 2024征信考试题库(含答案)
- 个人理财(西安欧亚学院)智慧树知到期末考试答案2024年
- pc(装配式)结构施工监理实施细则
评论
0/150
提交评论