版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IntroductoryEconometrics18.
MultipleRegressionAnalysis:Heteroskedasticity
y=b0+b1x1+b2x2+...bkxk+uIntroductoryEconometrics2WhatisHeteroskedasticity
Recalltheassumptionofhomoskedasticityimpliedthatconditionalontheexplanatoryvariables,thevarianceoftheunobservederror,u,wasconstantIfthisisnottrue,thatisifthevarianceofuisdifferentfordifferentvaluesofthex’s,thentheerrorsareheteroskedasticExample:estimatingreturnstoeducationandabilityisunobservable,andthinkthevarianceinabilitydiffersbyeducationalattainmentIntroductoryEconometrics3of75.Educationlevelprimarysecondaryf(y|x)IllustrationofHeteroskedasticity(wage2.dta)college..E(y|x)=b0+b1xwagehistogramsofwageratesforeacheducationdegree,IntroductoryEconometrics4CheckingtheExistenceofHSK:plottingtheresidualsagainstthefittedvaluesIntroductoryEconometrics5IntroductoryEconometrics6
Whenthereisheteroskedasticity…
OLSisstillunbiasedandconsistent.R-squaredoradjustedR-squaredarestillfinegoodness-of-fitmeasures.
IntroductoryEconometrics7
R-squaredoradjustedR-squaredTheyareestimatesofthepopulationR-squared,1
–[Var(u)/Var(y)],wherethevariancesaretheunconditionalvariancesinthepopulation.TheyconsistentlyestimatethepopulationR-squared,whetherornotVar(u|x)
=Var(y|x)dependsonx.
IntroductoryEconometrics8WhyWorryAboutHeteroskedasticity?ThestandarderrorsoftheestimatesarebiasedifwehaveheteroskedasticityIfthestandarderrorsarebiased,wecannotusetheusualtstatisticsorFstatisticsorLMstatisticsfordrawinginferencesIntroductoryEconometrics9
Whattodo?Econometricianshavelearnedhowtoadjuststandarderrors,t,F,andLMstatisticssothattheyarevalidinthepresenceofheteroskedasticityofunknownform.White(1980)showsthatthevariances,,canbeestimatedinthepresenceofheteroskedasticity.
IntroductoryEconometrics10VariancewithHeteroskedasticityIntroductoryEconometrics11VariancewithHeteroskedasticityIntroductoryEconometrics12of75VariancewithHeteroskedasticityThesquarerootofiscalled:
Heteroskedasticity-robuststandarderror,orWhitestandarderror,orHuberstandarderror,orEickerstandarderrors,orIntroductoryEconometrics13RobustStandardErrors
Nowthatwehaveaconsistentestimateofthevariance,thesquarerootcanbeusedasastandarderrorforinferenceTypicallycalltheserobuststandarderrorsSometimestheestimatedvarianceiscorrectedfordegreesoffreedombymultiplyingbyn/(n–k–1)Asn→∞it’sallthesame,thoughIntroductoryEconometrics14RobustStandardErrors(cont)
Importanttorememberthattheserobuststandarderrorsonlyhaveasymptoticjustification–withsmallsamplesizeststatisticsformedwithrobuststandarderrorswillnothaveadistributionclosetothet,andinferenceswillnotbecorrectInStata,robuststandarderrorsareeasilyobtainedusingtherobustoptionofregIntroductoryEconometrics15of75Example:robustseversususualse
(wage1.dta)IntroductoryEconometrics16IntroductoryEconometrics17IntroductoryEconometrics18
Example:robustseversususualseWhatdowelearn?Robuststandarderrorscanbeeitherlargerorsmallerthantheusualstandarderrors.Butempiricallytherobuststandarderrorsareoftenfoundtobelargerthanthestandarderrors.Ifthedifferencesbetweenthesetwoerrorsarelarge,thentheconclusionsforstatisticalinferencecanbeverydifferent.IntroductoryEconometrics19
Now,whycareabouttheusualse?Giventhatrobuststandarderrorsarevalidwhetherornotheteroskedasticityispresent,thenwhydowestillneedtheusualstandarderror?
NoticethatRobuststandarderrorsarejustifiedonlywhenthesamplesizeislarge.
IntroductoryEconometrics20RobustStandardErrorsWhenthesamplesizeissmallandthehomoskedasticyassumptionactuallyholds,theusualtstatisticshaveexacttdistribution,butthiswillnotbethecaseforrobuststandarderrors,henceinferencesmaynotbecorrect
Whenthesamplesizeislarge,reportingrobuststandarderrors(ortogetherwiththeusualstandarderrors)aremended,esp.inusingcross-sectionaldata.
IntroductoryEconometrics21
Heteroskedasticy(HSK)-robustInferenceafterOLSestimation(tstat.)LetrsedenoteHSK-robuststandarderrors
trse=(estimate-hypothesizedvalue)/(rse)
IntroductoryEconometrics22
Heteroskedasticy(HSK)-robustInferenceafterOLSestimation(Fstat.)TheHSK-RobustFstatisticWithHSKtheusualFstatisticisnolongerFdistributed.TheHSK-RobustFstatisticisalsocalledWaldstatistic HSKStataautomaticallycalculateitafterrobustregressionIntroductoryEconometrics23
Example:comparetheusualandrobustregressions:theusualregressions(birth.dta)IntroductoryEconometrics24
Example:usebirth.dta,FstatisticfortheusualregressionTotestwhetherthevariablemeasuringmother’seducation(motheduc)andwhetherlogfamilye(lfaminc)jointlyhavestatisticallysignificantimpacts,justtypeinSTATAExample:comparetheusualandrobustregressions:thetobustregressions(birth.dta)IntroductoryEconometrics25IntroductoryEconometrics26
Example:usebirth.dta,FstatisticfortherobustregressionFortherobustregression,theFstatisticisnowIntroductoryEconometrics27ARobustLMStatistic
RunOLSontherestrictedmodelandsavetheresidualsŭRegresseachoftheexcludedvariablesonalloftheincludedvariables(qdifferentregressions)andsaveeachsetofresidualsř1,ř2,…,řqRegressavariabledefinedtobe=1
onř1ŭ,ř2ŭ,…,řqŭ,withnointerceptTheLMstatisticisn–SSR1,whereSSR1isthesumofsquaredresidualsfromthisfinalregressionIntroductoryEconometrics28
Example:theLMfortheusualregression(1)
crime1.dtaH0:β2=β3=0H1:β2和β3至少有一个不为0Steps(i)对约束模型进行回归,得到残差(ii)用对无约束模型的所有解释变量进行回归,得到Ru2
IntroductoryEconometrics29IntroductoryEconometrics30IntroductoryEconometrics31of75Example:theLMfortheusualregression(2)
crime1.dta可知Ru2
=0.0013,进而有LM=nRu2=2725×0.0013=3.46Df=2,显著性水平为5%的
2
分布临界值为5.99,显然有LM<5.99,因此不能拒绝H0.IntroductoryEconometrics32
Example:theLMfortherobustregression(1)
crime1.dta从约束模型中得到残差将被排除的2个变量对所有未排除变量回归,保存残差,用r1和r2表示。分别求出与r1和r2的乘积,分别用x1和x2表示用1对x1和x2做不包括截距项的回归IntroductoryEconometrics33
Example:theLMfortherobustregression(2)
crime1.dtaIntroductoryEconometrics34IntroductoryEconometrics35of75Example:theLMfortherobustregression(3)
crime1.dta从而可得到LM统计量为3.997查自由度为2的
2分布5%的显著性水平下临界值为5.99.显然LM<5.99。因此不能拒绝零假设。注意:稳健回归和普通回归的LM检验结果一致IntroductoryEconometrics36
TestingforHSKThoughwehavemethodsofcomputingHSK-robustt,FandLMstatistics,therearestillreasonsforhavingsimpleteststhatcandetectthepresenceofheteroskedasticity.
IntroductoryEconometrics37
TestingforHSKReasonNo.1:WemayprefertoseetheusualOLSstandarderrorsandteststatisticsreportedunlessthereisevidenceofheteroskedasticity.
ReasonNo.2:Ifheteroskedasticityispresent,theOLSestimatorisnolongertheBLUE,thenitispossibletoobtainabetterestimatorthanOLS.IntroductoryEconometrics38TheBreuschnTestforHSK
EssentiallywanttotestH0:Var(u|x1,x2,…,xk)=s2,whichisequivalenttoH0:E(u2|x1,x2,…,xk)=E(u2)=s2Ifassumetherelationshipbetweenu2andxjwillbelinear,cantestasalinearrestrictionSo,foru2=d0+d1x1+…+dkxk+v)thismeanstestingH0:d1=d2=…=dk=0IntroductoryEconometrics39
TheBreuschnTestforHSKUnderthenullhypothesis,itisoftenreasonabletoassumethattheerrorvisindependentofx1,…,xk.TheneitherForLMstatisticsforoverallsignificanceoftheindependentvariablesinexplainingu2canbeusedtotestHSK.Theyareasymptoticallyvalidtestsinceu2isnotnormallydistributedinthesample.
IntroductoryEconometrics40TheBreusch-PaganTest
Don’tobservetheerror,butcanestimateitwiththeresidualsfromtheOLSregressionAfterregressingtheresidualssquaredonallofthex’s,canusetheR2toformanForLMtestTheFstatisticisjustthereportedFstatisticforoverallsignificanceoftheregression,F=[R2/k]/[(1–
R2)/(n–k–1)],whichisdistributedFk,n–k-1TheLMstatisticisLM=nR2,whichisdistributedc2kIntroductoryEconometrics41TheWhiteTest
TheBreusch-PagantestwilldetectanylinearformsofheteroskedasticityTheWhitetestallowsfornonlinearitiesbyusingsquaresandcrossproductsofallthex’sStilljustusinganForLMtotestwhetherallthexj,xj2,andxjxharejointlysignificantIntroductoryEconometrics42
TheWhiteTestforHSKThiscangettobeunwieldyprettyquickly.Forexample,ifwehavethreeexplanatoryvariables,x1,x2,and
x3thentheWhitetestwillhave9restrictions:3onlevels,3onsquares,and3oncross-products.Withsmallsamples,degreesoffreedomwillsoonberunoutwithmoreregressors.
IntroductoryEconometrics43AlternateformoftheWhitetest
ConsiderthatthefittedvaluesfromOLS,ŷ,areafunctionofallthex’sThus,ŷ2willbeafunctionofthesquaresandcrossproductsandŷandŷ2canproxyforallofthexj,xj2,andxjxh,soRegresstheresidualssquaredonŷandŷ2andusetheR2toformanForLMstatisticNoteonlytestingfor2restrictionsnowIntroductoryEconometrics44
B-P检验和White检验的stata命令regyx1x2…xkestathettest(B-P检验)estatimtest,white(white检验)Example8.4,8.5(hprice.dta)IntroductoryEconometrics45IntroductoryEconometrics46IntroductoryEconometrics47
FinalcommentsaboutHSKtestsItispossiblefortheHSKtesttorejectthenullwhenimportantvariablesareomitted,eventhoughthetruthisthereisnoHSK.
HSKcouldindicatemisspecification,therefore,whenpossible,thespecificationtestsshouldbecarriedoutearlierthantheHSKtest.IntroductoryEconometrics48WeightedLeastSquares
Whileit’salwayspossibletoestimaterobuststandarderrorsforOLSestimates,ifweknowsomethingaboutthespecificformoftheheteroskedasticity,wecanobtainmoreefficientestimatesthanOLSThebasicideaisgoingtobetotransformthemodelintoonethathashomoskedasticerrors–calledweightedleastsquaresIntroductoryEconometrics49Caseofformbeingknownuptoamultiplicativeconstant
SupposetheheteroskedasticitycanbemodeledasVar(u|x)=s2h(x),wherethetrickistofigureoutwhath(x)≡
hilookslikeE(ui/√hi|x)=0,becausehiisonlyafunctionofx,andVar(ui/√hi|x)=s2,becauseweknowVar(u|x)=s2hiSo,ifwedividedourwholeequationby√hiwewouldhaveamodelwheretheerrorishomoskedasticIntroductoryEconometrics50GeneralizedLeastSquares
EstimatingthetransformedequationbyOLSisanexampleofgeneralizedleastsquares(GLS)GLSwillbeBLUEinthiscaseGLSisaweightedleastsquares(WLS)procedurewhereeachsquaredresidualisweightedbytheinverseofVar(ui|xi)IntroductoryEconometrics51WeightedLeastSquares
WhileitisintuitivetoseewhyperformingOLSonatransformedequationisappropriate,itcanbetedioustodothetransformationWeightedleastsquaresisawayofgettingthesamething,withoutthetransformationIdeaistominimizetheweightedsumofsquares(weightedby1/hi)IntroductoryEconometrics52
WeightedLeastSquaresIntroductoryEconometrics53MoreonWLS
WLSisgreatifweknowwhatVar(ui|xi)lookslikeInmostcases,won’tknowformofheteroskedasticityExamplewheredoisifdataisaggregated,butmodelisindividuallevelWanttoweighteachaggregateobservationbytheinverseofthenumberofindividualsIntroductoryEconometrics54FeasibleGLS
Moretypicalisthecasewhereyoudon’tknowtheformoftheheteroskedasticityInthiscase,youneedtoestimateh(xi)Typically,westartwiththeassumptionofafairlyflexiblemodel,suchasVar(u|x)=s2exp(d0+d1x1+…+dkxk)Sincewedon’tknowthed,mustestimateIntroductoryEconometrics55FeasibleGLS(continued)
Ourassumptionimpliesthatu2=s2exp(d0+d1x1+…+dkxk)vWhereE(v|x)=1,thenifE(v)=1ln(u2)=a0
+d1x1+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水利枢纽施工分包
- 零星点工劳务分包合同
- 建筑施工合同文本模板
- 砌体工程分包合同填写指南中文版
- 煤炭运输业务合同范例
- 质量保障专业管道书样本
- 农药购买合同模板
- 电子购销合同的法律责任
- 水泥砖供应合同
- 房屋地基买卖合同正式落地
- GB/T 3280-2015不锈钢冷轧钢板和钢带
- GB/T 28655-2012业氟化氢铵
- 氧气(MSDS)安全技术说明书
- 第一章膳食调查与评价
- GB 5606.3-2005卷烟第3部分:包装、卷制技术要求及贮运
- 工程制图 第4章 截交线和相贯线
- 糖原的合成与分解培训课件
- 劳动关系协调基础知识课件
- 发动机机械系统2.0升ltg-9.66维修指南车下
- 2023年中闽(罗源)水务有限公司招聘笔试题库及答案解析
- 常用的氮肥硫酸铵课件
评论
0/150
提交评论