计量经济学导论电子ch08_第1页
计量经济学导论电子ch08_第2页
计量经济学导论电子ch08_第3页
计量经济学导论电子ch08_第4页
计量经济学导论电子ch08_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IntroductoryEconometrics18.

MultipleRegressionAnalysis:Heteroskedasticity

y=b0+b1x1+b2x2+...bkxk+uIntroductoryEconometrics2WhatisHeteroskedasticity

Recalltheassumptionofhomoskedasticityimpliedthatconditionalontheexplanatoryvariables,thevarianceoftheunobservederror,u,wasconstantIfthisisnottrue,thatisifthevarianceofuisdifferentfordifferentvaluesofthex’s,thentheerrorsareheteroskedasticExample:estimatingreturnstoeducationandabilityisunobservable,andthinkthevarianceinabilitydiffersbyeducationalattainmentIntroductoryEconometrics3of75.Educationlevelprimarysecondaryf(y|x)IllustrationofHeteroskedasticity(wage2.dta)college..E(y|x)=b0+b1xwagehistogramsofwageratesforeacheducationdegree,IntroductoryEconometrics4CheckingtheExistenceofHSK:plottingtheresidualsagainstthefittedvaluesIntroductoryEconometrics5IntroductoryEconometrics6

Whenthereisheteroskedasticity…

OLSisstillunbiasedandconsistent.R-squaredoradjustedR-squaredarestillfinegoodness-of-fitmeasures.

IntroductoryEconometrics7

R-squaredoradjustedR-squaredTheyareestimatesofthepopulationR-squared,1

–[Var(u)/Var(y)],wherethevariancesaretheunconditionalvariancesinthepopulation.TheyconsistentlyestimatethepopulationR-squared,whetherornotVar(u|x)

=Var(y|x)dependsonx.

IntroductoryEconometrics8WhyWorryAboutHeteroskedasticity?ThestandarderrorsoftheestimatesarebiasedifwehaveheteroskedasticityIfthestandarderrorsarebiased,wecannotusetheusualtstatisticsorFstatisticsorLMstatisticsfordrawinginferencesIntroductoryEconometrics9

Whattodo?Econometricianshavelearnedhowtoadjuststandarderrors,t,F,andLMstatisticssothattheyarevalidinthepresenceofheteroskedasticityofunknownform.White(1980)showsthatthevariances,,canbeestimatedinthepresenceofheteroskedasticity.

IntroductoryEconometrics10VariancewithHeteroskedasticityIntroductoryEconometrics11VariancewithHeteroskedasticityIntroductoryEconometrics12of75VariancewithHeteroskedasticityThesquarerootofiscalled:

Heteroskedasticity-robuststandarderror,orWhitestandarderror,orHuberstandarderror,orEickerstandarderrors,orIntroductoryEconometrics13RobustStandardErrors

Nowthatwehaveaconsistentestimateofthevariance,thesquarerootcanbeusedasastandarderrorforinferenceTypicallycalltheserobuststandarderrorsSometimestheestimatedvarianceiscorrectedfordegreesoffreedombymultiplyingbyn/(n–k–1)Asn→∞it’sallthesame,thoughIntroductoryEconometrics14RobustStandardErrors(cont)

Importanttorememberthattheserobuststandarderrorsonlyhaveasymptoticjustification–withsmallsamplesizeststatisticsformedwithrobuststandarderrorswillnothaveadistributionclosetothet,andinferenceswillnotbecorrectInStata,robuststandarderrorsareeasilyobtainedusingtherobustoptionofregIntroductoryEconometrics15of75Example:robustseversususualse

(wage1.dta)IntroductoryEconometrics16IntroductoryEconometrics17IntroductoryEconometrics18

Example:robustseversususualseWhatdowelearn?Robuststandarderrorscanbeeitherlargerorsmallerthantheusualstandarderrors.Butempiricallytherobuststandarderrorsareoftenfoundtobelargerthanthestandarderrors.Ifthedifferencesbetweenthesetwoerrorsarelarge,thentheconclusionsforstatisticalinferencecanbeverydifferent.IntroductoryEconometrics19

Now,whycareabouttheusualse?Giventhatrobuststandarderrorsarevalidwhetherornotheteroskedasticityispresent,thenwhydowestillneedtheusualstandarderror?

NoticethatRobuststandarderrorsarejustifiedonlywhenthesamplesizeislarge.

IntroductoryEconometrics20RobustStandardErrorsWhenthesamplesizeissmallandthehomoskedasticyassumptionactuallyholds,theusualtstatisticshaveexacttdistribution,butthiswillnotbethecaseforrobuststandarderrors,henceinferencesmaynotbecorrect

Whenthesamplesizeislarge,reportingrobuststandarderrors(ortogetherwiththeusualstandarderrors)aremended,esp.inusingcross-sectionaldata.

IntroductoryEconometrics21

Heteroskedasticy(HSK)-robustInferenceafterOLSestimation(tstat.)LetrsedenoteHSK-robuststandarderrors

trse=(estimate-hypothesizedvalue)/(rse)

IntroductoryEconometrics22

Heteroskedasticy(HSK)-robustInferenceafterOLSestimation(Fstat.)TheHSK-RobustFstatisticWithHSKtheusualFstatisticisnolongerFdistributed.TheHSK-RobustFstatisticisalsocalledWaldstatistic HSKStataautomaticallycalculateitafterrobustregressionIntroductoryEconometrics23

Example:comparetheusualandrobustregressions:theusualregressions(birth.dta)IntroductoryEconometrics24

Example:usebirth.dta,FstatisticfortheusualregressionTotestwhetherthevariablemeasuringmother’seducation(motheduc)andwhetherlogfamilye(lfaminc)jointlyhavestatisticallysignificantimpacts,justtypeinSTATAExample:comparetheusualandrobustregressions:thetobustregressions(birth.dta)IntroductoryEconometrics25IntroductoryEconometrics26

Example:usebirth.dta,FstatisticfortherobustregressionFortherobustregression,theFstatisticisnowIntroductoryEconometrics27ARobustLMStatistic

RunOLSontherestrictedmodelandsavetheresidualsŭRegresseachoftheexcludedvariablesonalloftheincludedvariables(qdifferentregressions)andsaveeachsetofresidualsř1,ř2,…,řqRegressavariabledefinedtobe=1

onř1ŭ,ř2ŭ,…,řqŭ,withnointerceptTheLMstatisticisn–SSR1,whereSSR1isthesumofsquaredresidualsfromthisfinalregressionIntroductoryEconometrics28

Example:theLMfortheusualregression(1)

crime1.dtaH0:β2=β3=0H1:β2和β3至少有一个不为0Steps(i)对约束模型进行回归,得到残差(ii)用对无约束模型的所有解释变量进行回归,得到Ru2

IntroductoryEconometrics29IntroductoryEconometrics30IntroductoryEconometrics31of75Example:theLMfortheusualregression(2)

crime1.dta可知Ru2

=0.0013,进而有LM=nRu2=2725×0.0013=3.46Df=2,显著性水平为5%的

2

分布临界值为5.99,显然有LM<5.99,因此不能拒绝H0.IntroductoryEconometrics32

Example:theLMfortherobustregression(1)

crime1.dta从约束模型中得到残差将被排除的2个变量对所有未排除变量回归,保存残差,用r1和r2表示。分别求出与r1和r2的乘积,分别用x1和x2表示用1对x1和x2做不包括截距项的回归IntroductoryEconometrics33

Example:theLMfortherobustregression(2)

crime1.dtaIntroductoryEconometrics34IntroductoryEconometrics35of75Example:theLMfortherobustregression(3)

crime1.dta从而可得到LM统计量为3.997查自由度为2的

2分布5%的显著性水平下临界值为5.99.显然LM<5.99。因此不能拒绝零假设。注意:稳健回归和普通回归的LM检验结果一致IntroductoryEconometrics36

TestingforHSKThoughwehavemethodsofcomputingHSK-robustt,FandLMstatistics,therearestillreasonsforhavingsimpleteststhatcandetectthepresenceofheteroskedasticity.

IntroductoryEconometrics37

TestingforHSKReasonNo.1:WemayprefertoseetheusualOLSstandarderrorsandteststatisticsreportedunlessthereisevidenceofheteroskedasticity.

ReasonNo.2:Ifheteroskedasticityispresent,theOLSestimatorisnolongertheBLUE,thenitispossibletoobtainabetterestimatorthanOLS.IntroductoryEconometrics38TheBreuschnTestforHSK

EssentiallywanttotestH0:Var(u|x1,x2,…,xk)=s2,whichisequivalenttoH0:E(u2|x1,x2,…,xk)=E(u2)=s2Ifassumetherelationshipbetweenu2andxjwillbelinear,cantestasalinearrestrictionSo,foru2=d0+d1x1+…+dkxk+v)thismeanstestingH0:d1=d2=…=dk=0IntroductoryEconometrics39

TheBreuschnTestforHSKUnderthenullhypothesis,itisoftenreasonabletoassumethattheerrorvisindependentofx1,…,xk.TheneitherForLMstatisticsforoverallsignificanceoftheindependentvariablesinexplainingu2canbeusedtotestHSK.Theyareasymptoticallyvalidtestsinceu2isnotnormallydistributedinthesample.

IntroductoryEconometrics40TheBreusch-PaganTest

Don’tobservetheerror,butcanestimateitwiththeresidualsfromtheOLSregressionAfterregressingtheresidualssquaredonallofthex’s,canusetheR2toformanForLMtestTheFstatisticisjustthereportedFstatisticforoverallsignificanceoftheregression,F=[R2/k]/[(1–

R2)/(n–k–1)],whichisdistributedFk,n–k-1TheLMstatisticisLM=nR2,whichisdistributedc2kIntroductoryEconometrics41TheWhiteTest

TheBreusch-PagantestwilldetectanylinearformsofheteroskedasticityTheWhitetestallowsfornonlinearitiesbyusingsquaresandcrossproductsofallthex’sStilljustusinganForLMtotestwhetherallthexj,xj2,andxjxharejointlysignificantIntroductoryEconometrics42

TheWhiteTestforHSKThiscangettobeunwieldyprettyquickly.Forexample,ifwehavethreeexplanatoryvariables,x1,x2,and

x3thentheWhitetestwillhave9restrictions:3onlevels,3onsquares,and3oncross-products.Withsmallsamples,degreesoffreedomwillsoonberunoutwithmoreregressors.

IntroductoryEconometrics43AlternateformoftheWhitetest

ConsiderthatthefittedvaluesfromOLS,ŷ,areafunctionofallthex’sThus,ŷ2willbeafunctionofthesquaresandcrossproductsandŷandŷ2canproxyforallofthexj,xj2,andxjxh,soRegresstheresidualssquaredonŷandŷ2andusetheR2toformanForLMstatisticNoteonlytestingfor2restrictionsnowIntroductoryEconometrics44

B-P检验和White检验的stata命令regyx1x2…xkestathettest(B-P检验)estatimtest,white(white检验)Example8.4,8.5(hprice.dta)IntroductoryEconometrics45IntroductoryEconometrics46IntroductoryEconometrics47

FinalcommentsaboutHSKtestsItispossiblefortheHSKtesttorejectthenullwhenimportantvariablesareomitted,eventhoughthetruthisthereisnoHSK.

HSKcouldindicatemisspecification,therefore,whenpossible,thespecificationtestsshouldbecarriedoutearlierthantheHSKtest.IntroductoryEconometrics48WeightedLeastSquares

Whileit’salwayspossibletoestimaterobuststandarderrorsforOLSestimates,ifweknowsomethingaboutthespecificformoftheheteroskedasticity,wecanobtainmoreefficientestimatesthanOLSThebasicideaisgoingtobetotransformthemodelintoonethathashomoskedasticerrors–calledweightedleastsquaresIntroductoryEconometrics49Caseofformbeingknownuptoamultiplicativeconstant

SupposetheheteroskedasticitycanbemodeledasVar(u|x)=s2h(x),wherethetrickistofigureoutwhath(x)≡

hilookslikeE(ui/√hi|x)=0,becausehiisonlyafunctionofx,andVar(ui/√hi|x)=s2,becauseweknowVar(u|x)=s2hiSo,ifwedividedourwholeequationby√hiwewouldhaveamodelwheretheerrorishomoskedasticIntroductoryEconometrics50GeneralizedLeastSquares

EstimatingthetransformedequationbyOLSisanexampleofgeneralizedleastsquares(GLS)GLSwillbeBLUEinthiscaseGLSisaweightedleastsquares(WLS)procedurewhereeachsquaredresidualisweightedbytheinverseofVar(ui|xi)IntroductoryEconometrics51WeightedLeastSquares

WhileitisintuitivetoseewhyperformingOLSonatransformedequationisappropriate,itcanbetedioustodothetransformationWeightedleastsquaresisawayofgettingthesamething,withoutthetransformationIdeaistominimizetheweightedsumofsquares(weightedby1/hi)IntroductoryEconometrics52

WeightedLeastSquaresIntroductoryEconometrics53MoreonWLS

WLSisgreatifweknowwhatVar(ui|xi)lookslikeInmostcases,won’tknowformofheteroskedasticityExamplewheredoisifdataisaggregated,butmodelisindividuallevelWanttoweighteachaggregateobservationbytheinverseofthenumberofindividualsIntroductoryEconometrics54FeasibleGLS

Moretypicalisthecasewhereyoudon’tknowtheformoftheheteroskedasticityInthiscase,youneedtoestimateh(xi)Typically,westartwiththeassumptionofafairlyflexiblemodel,suchasVar(u|x)=s2exp(d0+d1x1+…+dkxk)Sincewedon’tknowthed,mustestimateIntroductoryEconometrics55FeasibleGLS(continued)

Ourassumptionimpliesthatu2=s2exp(d0+d1x1+…+dkxk)vWhereE(v|x)=1,thenifE(v)=1ln(u2)=a0

+d1x1+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论