全等三角形易错点剖析_第1页
全等三角形易错点剖析_第2页
全等三角形易错点剖析_第3页
全等三角形易错点剖析_第4页
全等三角形易错点剖析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

判定三角形全等的错解例如一、对“对应〃二字认识不准确,应用全等判别法有误例1AABC和ADEF中,NA=30°,NB=70°,AC=17cm,ND=70°,NE=80°,DE=17cm.则AABC与ADEF全等吗?为什么?错解:AABC与ADEF全等.证明如下:在ADEF中,∙.∙∠D=70°,∠E=80°,.∖ZF=180o-ZD-ZE=180o-70o-80o=30°.在AABC中,∙.∙∠A=30°,∠B=70°,.∙∙∠A=∠F,∠B=∠D.又∙.∙AC=17cm,DE=17cm,・•・AC=DE.在AABC与ADEF中,.∙.AABC/ADEF.错解分析:AC是NB的对边,DE是NF的对边,而∠B≠∠F,所以这两个三角形不全等.AABC与ADEF不全等.因为相等的两边不是相等的两角的对边,不符合全等三角形的判别法.二、判定方法有错误例2如图,AC⊥BC,DC⊥EC,AC=BCjDC=EC.求证:ND=NE.错解:在AACE与ABCD中,VACXBC,DC⊥EC,.∙.∠ACB=∠ECD=90又∙.∙AC=BC,DC=EC,.∖ΔACE^∆BCD,ΛZD=ZE.错解分析:上面的证明中,错误地应用了“边角边〃.NACB与NECD并不是那一对三角形的角.正解:YAC⊥BC,DC⊥EC,.∙.NACB=NECD=90°,.∖ZACE=ZBCD.YAC=BC,NACE=NBCD,DC=EC,.∖ΔACE^∆BCD,ΛZD=ZE.三、错误套用等式性质例3如图,AC,BD相交于E点,NA=NB,N1=N2.求证:AE=BE.错证:在AADC和ABCD中,YNA=NB,DC=CD,N2=N1,「•△ADC/ABCD,「•△ADC—ADEC=ABCd—ADEC,「•△ADE/ABCE,.∙.AE=BE.错解分析:在证明三角形全等时,一定要按判定定理进展证明.上面的证明中,将等式性质错误地搬到了三角形全等中.这是完全错误的.正解:同上,易证AADC/ABCD,・・・AD=BC.在AADE和ABCE中,∙.∙AD=BC,∠A=∠B,∠AED=∠BEC,.∖ΔADE^∆BCE,ΛAE=BE.四、脱离题设,将对图形的直观印象视为条件进展证明例4如图,在AABC中,AD是它的角平分线,BD=CD.DE,DF分别垂直于AB,AC,垂足为E,F.求证:BE=CF.错解1:认为DE=DF,并以此为条件.在RtABDE与RtACDF中,VDE=DFjBD=CD,,RtABDE/RtACDF〔斜边直角边〕,∙'∙BE=CF.错解2:认为AD⊥BC,并以此为条件.通过证明AABD/AACD〔边角边〕,得AB=AC,再由AAED/AAFD〔角角边〕,得AE=AF,从而得到BE=CF.错解分析:错解1中认为DE=DF,并直接将其作为条件应用,因而产生错误;错解2中,认为AD⊥BC,没有经过推理加以说明,因而也产生了错误.产生上述错误的原因是审题不清,没有根据题设结合图形找到证题依据.正解:在AAED和AAFD中,,AAED/AAFD〔角角边〕,,DE=DF.在RtABDE与RtACDF中,RtABDE/RtACDF〔斜边直角边〕,,BE=CF.五、误将“SSA(边边角]〃当成“SAS(边角边)〃来证题例5如图,D是AABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE.试证明:NBAE=∠CAE.错解:在AAEB和AAEC中,.∖ΔAEB^ΔAEC,.∖ZBAC=ZCAE.错解分析:上解错在证两个三角形全等时用了“边边角〃来判定,这是不正确的,因为有两条边以及其中一边的对角对应相等的两个三角形不一定全等.正解:在ABEC中,因EB=EC,故NEBC=∠ECB.VZABE=ZACE,ΛZACB=ZABC,ΛAB=AC,'AE=AE,在RtAAEB和RtAAEC中,Jeb=EC,、AB=AC,,AAEB/AAEC,.∙∙∠BAC=∠CAE.在学习中,学会对题中图形进展观察以及对条件进展分析,弄明白证明思路.同时,对三角形全等的各种条件要记熟并能区分.三角形的全等具有传递性,比方假设有AABC/ADEF,ADEF/AMNP,则一定有AABC/AMNP,这个性质在解题时有很重要的应用.在一些计算图形中有几对全等三角形的题目时,利用这个性质可以发现一些不明显的全等关系,帮助发现那些不是直接有关联的全等三角形.六、把“角角角〃当成判定三角形全等的条件来使用例6如图,NCAB=∠DBA,∠C=∠D,E为AC和BD的交点.AADB与ABCA全等吗“说明理由.错解:AADB/ABCA.因为NC=ND,NCAB=NDBA,所以NDAB=NCBA,所以AADB/ABCA(AAA).错解分析:错解把三个角对应相等作为这两个三角形全等的依据,显然是错误的,“角角角〞不是识别两个三角形全等的条件.正解:AADB^△BCA.因为∠CAB=∠DBA,∠C=∠D,AB=BA(公共边),所以AADB/ABCA(AAS).七、把“边边角〞当成判定三角形全等的条件来使用例7如图,AABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC与△AEB全等吗“说明理由.错解:AADC/AAEB.因为AB=AC,BE=CD,∠BAE=∠CAD,所以AADC/AAEB(SSA).错解分析:错解把“边边角〞作为三角形全等的判别方法,实际上,“边边角〞不能作为三角形全等的判别依据,因为两边及一边对角对应相等的两个三角形不一定全等.正解:AADC/AAEB.因为AB=AC,D,E为AB,AC的中点,所以AD=AE.在AADC和AAEB中,因为AC=AB,AD=AE,CD=BE,所以AADC/AAEB(SSS).八、局部当整体例8如图,AB=AC,∠B=∠C,BD=CE,试说明AABE与AACD全等的理由.错解:在AABE和AACD中,因为AB=AC,∠B=∠C,BD=CE,所以AABE/AACD(SAS).错解分析:错解没有认真地结合图形来分析条件,错把三角形边上的一局部(BD是BE的一局部,CE是CD的一局部)当成边来说明,这不符合“边角边〃条件.正解:因为BD=CE,所以BD+DE=CE+DE,即BE=CD.在AABE和AACD中,因为AB=AC,NB=NC,BE=CD,所以AABE/AACD(SAS).九、把等量相减用在全等上例9如图,AC,BD相交于点O,NA=∠B,∠1=∠2,AD=BC.试说明AAOD/ABOC.错解:在AADC和ABCD中,因为NA=NB,N2=N1,DC=CD,所以AADC/ABCD(AAS),所以AADC-ADOC/ABCD-ADOC,即AAOD/ABOC.错解分析:错解原因是将等式的性质盲目地用到了三角形全等中,实际上,三角形全等是两个三角形完全重合,是不能根据等式上的数量关系来说明的.正解:在AAOD和ABOC中,NA=NB,NAOD=NBOC,AD=BC,所以AAOD/ABOC(AAS).十.“同理可证〃实际不同理例10:AD和A'D'分别是AABC和AA'B'C”的中线,AB=A'B”,BC=BC,AD=AD■求证:AABC/AA"B'C'.错解:如图,因为BD=1BC,B'D'=1B"C",BC=B'C”,22所以BD=B'D”.在AABD和ΔA'B'D'中,AB=A'B",BD=B'D”,AD=A'D”,因此AABD/AA'B'D”.同理可证AADC/AA'D'C‘.故AABD+△ADC/AA'B'D+AA'D'C",即AABC/AA'B'C”.错解分析:以上证法有两个错误:⑴用了不同理的同理可证.证明AABD/A'B'D'与AADC/AA'D'C'的理由是不同的.要证AADC/AA'D'C‘,需证NADC=NA'D'C」,根据SAS来证;⑵由两对全等三角形之和推出AABC/AA'B'C」,理由不充分.正解:由AABD/AA'B'D",有NB=NB".在AABC和AA'B'C‘中,AB=A'B",NB=NB',BC=B'C",因此AABC/AA"B'C".十一.不顾条件任意引申例11:如图,AB=AC,BD=CE,AD=AE.求证:BE=CD.错解:在AABD和AACE中,因为AB=AC,BD=CE,AD=AE,所以AABD/AACE,故N1=N2.于是N

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论