版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆的基本性质复习课知识体系圆基本性质概念对称性垂径定理圆心角、弧、弦之间的关系定理圆周角与圆心角的关系弧长、扇形面积和圆锥的侧面积相关计算要点、考点聚焦1.本课时重点是垂径定理及其推论,圆心角、圆周角、弦心距、弧之间的关系.2.圆的定义(1)是通过旋转.(2)是到定点的距离等于定长的点的集合.3.点和圆的位置关系(圆心到点的距离为d)(1)点在圆上d=r.(2)点在圆内d<r.(3)点在圆外d>r.4.与圆有关的概念(1)弦:连结圆上任意两点的线段.(2)直径:经过圆心的弦.(3)弧:圆上任意两点间的部分.(4)优弧:劣弧、半圆.(5)等弧:在同圆或等圆中,能够完全重合的孤.(6)圆心角:顶点在圆心,角的两边与圆相交.(7)圆周角:顶点在圆上,角的两边与圆相交.(8)三角形外心及性质.要点、考点聚焦垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对的一条弧的直径,垂直平分弦,并平分弦所对的另一条弧.5.有关定理及推论(1)定理:不在同一直线上的三个点确定一个圆.(2)垂径定理及其推论.要点、考点聚焦圆的定义(运动观点)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”圆的定义辨析篮球是圆吗?圆必须在一个平面内以3cm为半径画圆,能画多少个?以点O为圆心画圆,能画多少个?由此,你发现半径和圆心分别有什么作用?半径确定圆的大小;圆心确定圆的位置圆是“圆周”还是“圆面”?圆是一条封闭曲线圆周上的点与圆心有什么关系?点与圆的位置关系圆是到定点(圆心)的距离等于定长(半径)的点的集合。圆的内部是到圆心的距离小于半径的点的集合。圆的外部是到圆心的距离大于半径的点的集合。由此,你发现点与圆的位置关系是由什么来决定的呢?如果圆的半径为r,点到圆心的距离为d,则:点在圆上
d=r点在圆内
d<r点在圆外
d>r圆的有关性质过三点的圆思考:确定一条直线的条件是什么?类比联想:是否也存在由几个点确定一个圆呢?讨论:经过一个点,能作出多少个圆? 经过两个点,如何作圆,能作多少个? 经过三个点,如何作圆,能作多少个?经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。问题1:如何作三角形的外接圆?如何找三角形的外心?问题2:三角形的外心一定 在三角形内吗?∠C=90°▲ABC是锐角三角形▲ABC是钝角三角形垂直于弦的直径及其推论从特殊到一般想一想:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?性质:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。观察右图,有什么等量关系?垂直于弦的直径AO=BO=CO=DO,弧AD=弧BC,弧AC=弧BD。AO=BO=CO=DO,弧AD=弧BC=弧AC=弧BD。AO=BO=CO=DO,弧AD=弧BD,弧AC=弧BC,AE=BE
。垂径定理垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。判断下列图形,能否使用垂径定理?注意:定理中的两个条件(直径,垂直于弦)缺一不可!定理辨析练习OABE若圆心到弦的距离用d表示,半径用r表示,弦长用a表示,这三者之间有怎样的关系?变式1:AC、BD有什么关系?变式2:AC=BD依然成立吗?变式3:EA=____,EC=_____。FDFB变式4:______ AC=BD.OA=OB变式5:______ AC=BD.OC=OD变式练习如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO=5,求⊙O的半径。MAPBO辅助线关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44029-2024低阶粉煤外热式连续干馏技术规范
- 苏教版五年级上册数学第四单元 小数加法和减法 测试卷及完整答案【必刷】
- 等式的性质教学设计
- 绿化工程合同
- 设计小学数学作业的四大黄金法则
- 诚意金协议书范本模板
- 语文大专考试宝典版卷
- 语文课件婴宁的语文解析
- 货物储存安全保证
- 购房贷款协议范本
- 宣城市区住宅物业服务和收费标准公示
- 大锁孙天宇小品《时间都去哪了》台词剧本完整版-一年一度喜剧大赛
- 信息技术与历史融合教学设计教案
- 《塑料模具的装配》
- 新能源汽车概论-新能源汽车驱动电机
- 实验室安全教育考试题库(全)实验室安全考试题库及答案
- 《人力资源管理》-课件-第八章-国际人力资源管理
- 酒店保洁服务投标方案(完整技术标)
- 场域与对话-公共空间里的雕塑 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 特种设备报停、报废、注销申请表
- 三偏心蝶阀设计方案
评论
0/150
提交评论