五年级分数除法教案5篇_第1页
五年级分数除法教案5篇_第2页
五年级分数除法教案5篇_第3页
五年级分数除法教案5篇_第4页
五年级分数除法教案5篇_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

五年级分数除法教案5篇五年级分数除法教案篇1

教学内容:

教材第29—30页的内容。

教学目标:

1、能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。

2、探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数解决简单的实际问题。

教学重点:

分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。

教学难点:

运用分数除以整数解决简单的实际问题。

教具准备:

多媒体课件。

预习提纲:

1、观察课本第29页的图,从中你能获得哪些数学信息呢?

2、根据这些数学信息你能提出哪些问题?

3、分析例题,写出等量关系,并试用方程解答。

4、想想还有别的算法吗?

教学过程:

一、创设情境,引发探究

1、同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?

2、课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?

(1)打篮球的人数是踢足球的4/9、

(2)踢毽子的人数是踢足球的1/3、

(3)跳绳的人数是参加活动总人数的2/9、

……

二、提出问题,自主探究

1、根据这些数学信息你能提出哪些问题?

操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9,跳绳的有多少人?

列出这题的等量关系,并解答。全班交流。

2、还能提出哪些数学问题,引出例题

跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?

这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?

你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。

解:设操场上有x人参加活动。

χ×2/9=6

χ×2/9÷2/9=6÷2/9

χ×=27

3、想一想,还有别的算法吗?怎么算?为什么?

6÷2/9=27(人)

三、巩固练习,实践探究

刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?

1、操场上打篮球的有4人。

(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?

(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?

(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?

(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。

2、某月双休日9天,是这个月总天数的3/10,这个月有多少天?

(板演过程中,着重分析学生可能存在的误解之处。)

3、根据以下方程,编出相应的应用题。

χ×1/5=30χ×2/3=40

四、回顾反思,总结全课。

通过这节课的学习你有哪些收获?

五年级分数除法教案篇2

教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

动手操作的能力和抽象,概括,归纳的能力.

教学重点:分数的数感培养,以及与除法的联系.

教学难点:抽象思维的培养.

教学过程:

一,铺垫复习,导入新知[课件1]

1,提问:a,7/8是什么数它表示什么

b,7÷8是什么运算它又表示什么

c,你发现7/8和7÷8之间有联系吗

2,揭示课题.

述:它们之间究竟有怎样的关系呢这节课我们就来研究"分数与除法的关系".

板书课题:分数与除法的关系

二,探索新知,发展智能

1,教学p90.例2:把1米长的钢管平均截成3段,每段长多少

提问:a,试一试,你有办法解决这个问题吗

板书:用除法计算:1÷3=0.333……(米)

用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

是1/3米.

b,这两种解法有什么联系吗

(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和1/3是相等的关系.)

板书:1÷3=1/3

c,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

表示也就是说整数除法的商也可以用谁来表示

2,教学p90.例3:把3块饼平均分给4个孩子,每个孩子分得多少块[课件3]

(1)分析:a,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少怎么列式

b,同理,把3块饼平均分给4个孩子,每个孩子分得多少怎么列式3÷4的商能不能用分数来表示呢

板书:3÷4=3/4

(2)操作检验(分组进行)

①把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

②反馈分法.

提问:a,请介绍一下你们是怎么分的

(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4块,也就是3/4块.)

(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的,拼起来相当于一块饼的3/4,也就是3/4块.)

b,比较这两种分法,哪种简便些

※把5块饼平均分给8个孩子,每个孩子分得多少说一说自己的分法和想法.

3,小结提问:a,观察上面的学习,你获得了哪些知识

板书:被除数÷除数=除数/被除数

b,你能举几个用分数表示整数除法的商的例子吗

c,能不能用一个含有字母算式来表示所有的例子

板书:a÷b=b/a(b≠0)

d,b为什么不能等于0

4,看书p91深化.

反馈:说一说分数和除法之间和什么联系又有什么区别

板书:分数是一个数,除法是一种运算.

三,巩固练习[课件5]

1,用分数表示下面各式的商.

5÷824÷2516÷497÷139÷9c÷d

2,口算.

7÷13=()÷9=1/2=()÷()8/13=()÷()

3,7/10表示把单位"1"平均分成()份,表示这样的()份的数.1÷21表示两个数(),还可以表示把()平均分成()份,表示这样的一份的数.

四,全课小结

当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

在整数除法中零不能作除数,那么,分数的分母也不能是零.

五,家作

p93.1,2,3

板书设计:分数与除法的关系

例2:1÷3=0.333……(米)=1/3(米)例3:3÷4=3/4

被除数÷除数=除数/被除数

a÷b=b/a(b≠0)

分数是一个数,除法是一种运算

五年级分数除法教案篇3

教学内容:

教材第29~30页“分数除法(三)”。

教学目标:

1、能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

2、在解方程中,巩固分数除法的计算方法。

教学重难点:

1、能够体会方程是解决实际问题的重要模型。

2、能够用方程解决实际问题。

教学过程:

一、创设情景激趣揭题

1、出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

2、引入并板书课题。

二、扶放结合探究新知

1、根据这些数学信息,你能提出哪些数学问题?

2、引导学生逐一解答提出的问题。

3、重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

4、引导观察,找出有什么相同点和不同点?

三、反馈矫正落实双基

1、指导完成p29的试一试的1,2题。

2、你能根据方程

x×1/5=30

编一道应用题吗?

3、请你想一个问题情景,遍一道分数应用题。

四、小结评价布置预习

1、引导小结

通过本节课的学习你有哪些收获?

2、布置预习

整理前面所学知识。

板书设计:

跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

参加活动总人数×2/9=跳绳的人数

解:设操场有x人参加活动。

五年级分数除法教案篇4

设计说明

苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

课前准备

教师准备ppt课件、长方形包装纸

学生准备长方形纸

教学过程

⊙创设情境,提出问题

1.问题导入。

师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

请你们列出算式并计算。

(1)每人吃张饼,4个人共吃多少张饼?

(2)把2张饼平均分给4个人,每人分得多少张饼?

(3)有2张饼,每人分得张饼,可以分给几个人?

(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

2.揭示分数除法的意义。

讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

⊙合作交流,探究新知

1.引导参与,探究新知。

(1)出示教材55页例题。

师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

(2)动手操作,分一分,涂一涂。

师:请大家拿出一张长方形纸,涂色表示出这张纸的。

(学生动手操作,教师巡视指导)

师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

(学生活动,教师指导)

(3)观察发现。

师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

预设

(教师利用课件配合学生汇报)

生1:把平均分成2份,每份是2个小格,占这张纸的。

生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

2.初探算法。

师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

预设

生:分母不变,被除数的分子除以整数得到的商作商的分子。

提出质疑,验证猜想,理解新知。

(1)尝试验证,发现问题。

师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

(学生汇报验证的结果)

师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的'分子不能被除数整除)

五年级分数除法教案篇5

教学内容:

49~50页的内容及练习十二1~12题。

教学目标:

1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学难点:

理解可以用分数表示两个数相除的商。

教具准备:

课件

教学过程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论