2024届江苏省盐城市大丰区部分学校九年级数学第一学期期末达标测试试题含解析_第1页
2024届江苏省盐城市大丰区部分学校九年级数学第一学期期末达标测试试题含解析_第2页
2024届江苏省盐城市大丰区部分学校九年级数学第一学期期末达标测试试题含解析_第3页
2024届江苏省盐城市大丰区部分学校九年级数学第一学期期末达标测试试题含解析_第4页
2024届江苏省盐城市大丰区部分学校九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省盐城市大丰区部分学校九年级数学第一学期期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知是方程x2﹣2x+c=0的一个根,则c的值是()A.﹣3 B.3 C. D.22.对于二次函数,下列描述错误的是().A.其图像的对称轴是直线=1 B.其图像的顶点坐标是(1,-9)C.当=1时,有最小值-8 D.当>1时,随的增大而增大3.张华同学的身高为米,某一时刻他在阳光下的影长为米,同时与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米4.如图,在第一象限内,,是双曲线()上的两点,过点作轴于点,连接交于点,则点的坐标为()A. B. C. D.5.将一元二次方程化成一般式后,二次项系数和一次项系数分别为()A.4,3 B.4,7 C.4,-3 D.6.已知点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y38.已知二次函数自变量的部分取值和对应函数值如表:…-2-10123……-503430…则在实数范围内能使得成立的取值范围是()A. B. C. D.或9.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C. D.∠DBC=90°10.下列式子中表示是的反比例函数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)12.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.13.若点、在同一个反比例函数的图象上,则的值为________.14.图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E、F、G、H分别为矩形AB、BC、CD、DA的中点,若AB=4,BC=6,则图乙中阴影部分的面积为_____.15.如图,一次函数的图象与反比例函数的图象交于A(2,﹣4),B(m,2)两点.当x满足条件______________时,一次函数的值大于反比例函数值.16.已知直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,过点D(0,-1)的直线分别交、于点E、F,若△BDE与△BDF的面积相等,则k=____.17.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为_____.18.如图,△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,CD=6,则AB=_______.三、解答题(共66分)19.(10分)计算:+20﹣|﹣3|+(﹣)﹣1.20.(6分)小王去年开了一家微店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同,试求每月盈利的平均增长率.21.(6分)前苏联教育家苏霍姆林斯曾说过:“让学生变聪明的方法,不是补课,不是増加作业量,而是阅读,阅读,再阅读”.课外阅读也可以促进我们养成终身学习的习惯.云南某学校组织学生利用课余时间多读书,读好书,一段时间后,学校对部分学生每周阅读时间进行调查,并绘制了不完整的频数分布表和频数分布直方图,如图所示:时间(时)频数百分比1010%25mn30%a20%1515%根据图表提供的信息,回答下列问题:(1)填空:______,________;(2)请补全频数分布直方图;(3)该校共有3600名学生,估计学生每周阅读时间x(时)在范围内的人数有多少人?22.(8分)综合与探究问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是,位置关系是.合作探究:(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.23.(8分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P,求证:;(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.24.(8分)如图,是的直径,过的中点.,垂足为.(1)求证:直线是的切线;(2)若,的直径为,求的长及的值.25.(10分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degreeofsurprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标,点坐标,惊喜四边形属于所学过的哪种特殊平行四边形?,为.(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.26.(10分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为米的正方形后,剩下的部分刚好能围成一个容积为米的无盖长方体箱子,且此长方体箱子的底面长比宽多米,现已知购买这种铁皮每平方米需元钱,算一算张大叔购回这张矩形铁皮共花了________元钱.

参考答案一、选择题(每小题3分,共30分)1、B【分析】把x=代入方程得到关于c的方程,然后解方程即可.【题目详解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故选:B.【题目点拨】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.2、C【分析】将解析式写成顶点式的形式,再依次进行判断即可得到答案.【题目详解】=,∴图象的对称轴是直线x=1,故A正确;顶点坐标是(1,-9),故B正确;当x=1时,y有最小值-9,故C错误;∵开口向上,∴当>1时,随的增大而增大,故D正确,故选:C.【题目点拨】此题考查函数的性质,熟记每种函数解析式的性质是解题的关键.3、A【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体、影子、经过物体顶部的太阳光线三者构成的两个直角三角形相似.【题目详解】解:据相同时刻的物高与影长成比例,

设这棵树的高度为xm,

则可列比例为,,解得,x=3.1.

故选:A.【题目点拨】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.4、D【分析】先根据P点坐标计算出反比例函数的解析式,进而求出M点的坐标,再根据M点的坐标求出OM的解析式,进而将代入求解即得.【题目详解】解:将代入得:∴∴反比例函数解析式为将代入得:∴∴设OM的解析式为:∴将代入得∴∴OM的解析式为:当时∴点的坐标为.故选:D.【题目点拨】本题考查待定系数法求解反比例函数和正比例函数解析式,解题关键是熟知求反比例函数和正比例函数解析式只需要一个点的坐标.5、C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【题目详解】解:化成一元二次方程一般形式是4x2-1x+7=0,则它的二次项系数是4,一次项系数是-1.

故选:C.【题目点拨】本题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式.6、C【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【题目详解】∵在反比例函数y=中,k<0,∴此函数图象在二、四象限,∵﹣3<﹣1<0,∴点A(﹣3,y1),B(﹣1,y1)在第二象限,∴y1>0,y1>0,∵函数图象在第二象限内为增函数,﹣3<﹣1<0,∴0<y1<y1.∵3>0,∴C(3,y3)点在第四象限,∴y3<0,∴y1,y1,y3的大小关系为y3<y1<y1.故选:C.【题目点拨】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.7、C【解题分析】将x的值代入函数解析式中求出函数值y即可判断.【题目详解】当x=-3时,y1=1,

当x=-1时,y2=3,

当x=1时,y3=-3,

∴y3<y1<y2

故选:C.【题目点拨】考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题.8、C【分析】根据y=0时的两个x的值可得该二次函数的对称轴,根据二次函数的对称性可得x=4时,y=5,根据二次函数的增减性即可得图象的开口方向,进而可得答案.【题目详解】∵,∴,∵x=-1时,y=0,x=3时,y=0,∴该二次函数的对称轴为直线x==1,∵1-3=-2,1+3=4,∴当时的函数值与当时的函数值相等,∵时,,∴时,,∵x>1时,y随x的增大而减小,x<1时,y随x的增大而增大,∴该二次函数的开口向下,∴当时,,即,故选:C.【题目点拨】本题考查二次函数的性质,正确提取表中信息并熟练掌握二次函数的性质是解题关键.9、A【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【题目详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,

∴AF=BF,,∠DBC=90°,

∴B、C、D正确;

∵点F不一定是OC的中点,

∴A错误.故选:A.【题目点拨】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.10、D【解题分析】根据反比例函数的定义逐项分析即可.【题目详解】A.是一次函数,故不符合题意;B.二次函数,故不符合题意;C.不是反比例函数,故不符合题意;D.是反比例函数,符合题意;故选D.【题目点拨】本题考查了反比例函数的定义,一般地,形如(k为常数,k≠0)的函数叫做反比例函数.二、填空题(每小题3分,共24分)11、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD∥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【题目详解】解:如图,∵在四边形ABCD中,AD=BC,AD∥BC,

∴四边形ABCD是平行四边形,

∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;

当AC⊥BD时,四边形ABCD是菱形.

故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【题目点拨】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.12、【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【题目详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S阴影=4-故答案为:【题目点拨】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.13、【分析】设反比例函数的解析式为(k为常数,k≠0),把A(3,8)代入函数解析式求出k,得出函数解析式,把B点的坐标代入,即可求出答案.【题目详解】解:设反比例函数的解析式为(k为常数,k≠0),把A(3,8)代入函数解析式得:k=24,即,把B点的坐标代入得:故答案为−6.【题目点拨】考查待定系数法求反比例函数解析式,熟练掌握待定系数法是解题的关键.14、【分析】根据S阴=S菱形PHQF﹣2S△HTN,再求出菱形PHQF的面积,△HTN的面积即可解决问题.【题目详解】如图,设FM=HN=a.由题意点E、F、G、H分别为矩形AB、BC、CD、DA的中点,∴四边形DFBH和四边形CFAH为平行四边形,∴DF∥BH,CH∥AF,∴四边形HQFP是平行四边形又HP=CH=DP=PF,∴平行四边形HQFP是菱形,它的面积=S矩形ABCD=×4×6=6,∵FM∥BJ,CF=FB,∴CM=MJ,∴BJ=2FM=2a,∵EJ∥AN,AE=EB,∴BJ=JN=2a,∵S△HBC=•6•4=12,HJ=BH,∴S△HCJ=×12=,∵TN∥CJ,∴△HTN∽△HCJ,∴=()2=,∴S△HTN=×=,∴S阴=S菱形PHQF﹣2S△HTN=6﹣=,故答案为.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质、菱形的判定与性质及相似三角形的性质.15、x<﹣4或0<x<2【分析】(1)根据一次函数y=-x+b的图象与反比例函数(a≠0)的图象相交于A(2,﹣4),B(m,2)两点,可以求得a=-8,m=-4,根据函数图象和点A、B的坐标可以得到当x为何值时,一次函数值大于反比例函数值.【题目详解】∵一次函数y=-x+b的图象与反比例函数的图象相交于A(2,-4)、B(m,2)两点,∴将x=2,y=-4代入得,a=-8;∴将x=m,y=2代入,得m=-4,∴点B(-4,2),∵点A(2,-4),点B(-4,2),∴由函数的图象可知,当x<﹣4或0<x<2时,一次函数值大于反比例函数值.故答案为:x<﹣4或0<x<2.【题目点拨】本题考查反比例函数和一次函数的交点问题,解题的关键是明确题意,利用数形结合的思想,找出所求问题需要的条件.16、【分析】先利用一次函数图像相关求出A、B、C的坐标,再根据△BDE与△BDF的面积相等,得到点E、F的横坐标相等,从而进行分析即可.【题目详解】解:由直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,求出A、B、C的坐标分别为,将点D(0,-1)代入得到,又△BDE与△BDF的面积相等,即知点E、F的横坐标相等,且直线分别交、于点E、F,可知点E、F为关于原点对称,即知坡度为45°,斜率为.故k=.【题目点拨】本题考查一次函数图像性质与几何图形的综合问题,熟练掌握一次函数图像性质以及等面积三角形等底等高的概念进行分析是解题关键.17、1【分析】根据题意当点C的横坐标取最小值时,抛物线的顶点与点A重合,进而可得抛物线的对称轴,则可求出此时点D的最小值,然后根据抛物线的平移可求解.【题目详解】解:∵点A,B的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),可得:当点C的横坐标取最小值时,抛物线的顶点与点A重合,∴抛物线的对称轴为:直线,∵点,∴点D的坐标为,∵顶点在线段AB上移动,∴点D的横坐标的最大值为:5+3=1;故答案为1.【题目点拨】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.18、1【分析】根据题意由已知得△BDC为等腰直角三角形,所以CD=BC=6,又因为已知∠A的正弦值,即可求出AB的长.【题目详解】解:∵∠C=90°,∠BDC=45°,∴BC=CD=6,又∵sinA==,∴AB=6÷=1.故答案为:1.【题目点拨】本题考查解直角三角形问题,直角三角形知识的牢固掌握和三角函数的灵活运用.三、解答题(共66分)19、2【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【题目详解】解:原式=4+1﹣3﹣2=2.【题目点拨】本题考查了负指数幂的性质、零指数幂的性质和绝对值的性质,解题的关键是掌握上述运算的性质.20、【分析】设该商店的每月盈利的平均增长率为x,根据“2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同”,列出关于x的一元二次方程,解之即可.【题目详解】设该商店的每月盈利的平均增长率为x,根据题意得:2400(1+x)2=3456,解得:x1=0.2,x2=−2.2(舍去),答:每月盈利的平均增长率为20%.【题目点拨】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.21、(1)25%,30;(2)见解析;(3)1800人【分析】(1)根据百分比之和等于1求出m的值,由0≤x<3的频数及频率求出总人数,总人数乘以对应的百分比求出n的值;(2)总人数乘以对应的百分比求出a的值,从而补全直方图;(3)总人数乘以对应的百分比可得答案.【题目详解】(1)抽取的学生人数为:(人);∴,.故答案为:25%,30;(2),补全频数分布直方图如解图所示;(3)(人),答:估计学生每周阅读时间x(时)在范围内的人数有1800人.【题目点拨】错因分析:第(1)问,①未搞清楚各组百分比之和等于1;②各组频数之和等于抽取的样本总数;第(2)问,不会利用各组的频数等于样本总数乘各组所占的百分比来计算,第(3)问,样本估计总体时,忽略了要用总人数乘时间段“6~9和9~12”这两个时间段所占的百分比之和.22、(1)FG=FH,FG⊥FH;(2)(1)中结论成立,证明见解析;(3)(1)中的结论成立,结论是FH=FG,FH⊥FG.理由见解析.【解题分析】试题分析:(1)证BE=AD,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;

(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;

(3)连接AD,BE,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)∵CE=CD,AC=BC,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,AC=BC,∴△ACD≌△BCE,∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠CXA=∠DXB,∴∴即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG点睛:三角形的中位线平行于第三边并且等于第三边的一半.23、(1)证明见解析;(2)①;②证明见解析.【分析】(1)易证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出;(2)①根据等腰直角三角形的性质和勾股定理,求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长.从而,由△AMN∽△AGF和△AMN的MN边上高,△AGF的GF边上高,GF=,根据MN:GF等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根据(1),从而得出结论.【题目详解】解:(1)在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴,同理在△ACQ和△APE中,,∴;(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴,∴DG•EF=CF•BG,又∵DG=GF=EF,∴GF2=CF•BG,由(1)得,∴,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论