版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省东营市四校连赛九年级数学第一学期期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=GE;④S四边形CEGF=S△ABG,其中正确的个数为()A.1个 B.2个 C.3个 D.4个2.在中,,垂足为D,则下列比值中不等于的是()A. B. C. D.3.如图,⊙O是△ABC的外接圆,∠C=60°,则∠AOB的度数是()A.30° B.60° C.120° D.150°4.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知二次函数,当时,该函数取最大值8.设该函数图象与轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.6.若反比例函数的图象分布在二、四象限,则关于x的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.只有一个实数根7.二次函数的图象的顶点在坐标轴上,则m的值()A.0 B.2 C. D.0或8.如图,A,B,C是⊙O上的三点,∠BAC=55°,则∠BOC的度数为()A.100° B.110° C.125° D.130°9.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则下列各点中在⊙A外的是()A.点A B.点B C.点C D.点D10.已知x=1是一元二次方程mx2–2=0的一个解,则m的值是().A. B.2 C. D.1或211.如图,△ABC中,D为AC中点,AF∥DE,S△ABF:S梯形AFED=1:3,则S△ABF:S△CDE=()A.1:2 B.2:3 C.3:4 D.1:112.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.二、填空题(每题4分,共24分)13.若a、b、c、d满足ab=cd=14.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为▲.15.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为_____.16.已知函数y=kx2﹣2x+1的图象与x轴只有一个有交点,则k的值为_____.17.若关于x的一元二次方程x2+2x+m﹣2=0有实数根,则m的值可以是__.(写出一个即可)18.如图,原点O为平行四边形A.BCD的对角线A.C的中点,顶点A,B,C,D的坐标分别为(4,2),(,b),(m,n),(-3,2).则(m+n)(+b)=__________.三、解答题(共78分)19.(8分)计算:|1﹣|+(2019﹣50)0﹣()﹣220.(8分)如图,已知方格纸中的每个小方格都是相同的正方形(边长为1),方格纸上有一个角∠AOB,A,O,B均为格点,请回答问题并只用无刻度直尺和铅笔,完成下列作图并简要说明画法:(1)OA=_____,(2)作出∠AOB的平分线并在其上标出一个点Q,使.21.(8分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,.(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,,求的半径.22.(10分)如图,已知,相交于点为上一点,且.(1)求证:;(2)求证:.23.(10分)如图,内接于,且为的直径.的平分线交于点,过点作的切线交的延长线于点,过点作于点,过点作于点.(1)求证:;(2)试猜想线段,,之间有何数量关系,并加以证明;(3)若,,求线段的长.24.(10分)如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(1,4),B(4,(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.25.(12分)(问题情境)如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.(拓展延伸)(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.26.已知二次函数y=x2-2x-1.(1)求图象的对称轴、顶点坐标;(2)当x为何值时,y随x的增大而增大?
参考答案一、选择题(每题4分,共48分)1、C【分析】根据正方形的性质证明△ABE≌△BCF,可证得①AE⊥BF;
②AE=BF正确;证明△BGE∽△ABE,可得==,故③不正确;由S△ABE=S△BFC可得S四边形CEGF=S△ABG,故④正确.【题目详解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF,故①,②正确;
∵CF=2FD,BE=CF,AB=CD,
∴=,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAE,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
∴==,即BG=GE,故③不正确,
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE−S△BEG=S△BFC−S△BEG,
∴S四边形CEGF=S△ABG,故④正确.
故选:C.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识点,解决问题的关键是熟练掌握正方形的性质.2、D【分析】利用锐角三角函数定义判断即可.【题目详解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故选:D.【题目点拨】此题考查了锐角三角函数的定义,熟练掌握锐角三角函数定义是解本题的关键.3、C【分析】根据圆周角定理即可得到结论.【题目详解】∵∠C=60°,∴∠AOB=2∠C=120°,故选:C.【题目点拨】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.4、A【解题分析】∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.5、B【分析】利用函数与x轴的交点,求出横坐标,根据开口方向、以及列出不等式组,解不等式组即可.【题目详解】∵二次函数,当时,该函数取最大值8∴,当y=0时,∴∵∴∴∴故选:B【题目点拨】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.6、A【分析】反比例函数的图象分布在二、四象限,则k小于0,再根据根的判别式判断根的情况.【题目详解】∵反比例函数的图象分布在二、四象限∴k<0则则方程有两个不相等的实数根故答案为:A.【题目点拨】本题考查了一元二次方程方程根的情况,务必清楚时,方程有两个不相等的实数根;时,方程有两个相等的实数根;时,方程没有实数根.7、D【解题分析】试题解析:当图象的顶点在x轴上时,∵二次函数的图象的顶点在x轴上,∴二次函数的解析式为:∴m=±2.当图象的顶点在y轴上时,m=0,故选D.8、B【分析】由点A、B、C是⊙O上的三点,∠BAC=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【题目详解】解:∵∠BAC=55°,∴∠BOC=2∠BAC=110°.(圆周角定理)故选:B.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半9、C【解题分析】试题分析:根据勾股定理求出AC的长,进而得出点B,C,D与⊙A的位置关系.解:连接AC,∵AB=3cm,AD=4cm,∴AC=5cm,∵AB=3<4,AD=4=4,AC=5>4,∴点B在⊙A内,点D在⊙A上,点C在⊙A外.故选C.考点:点与圆的位置关系.10、B【分析】根据一元二次方程的解的定义,把x=1代入mx2–2=0可得关于m的一元一次方程,解方程求出m的值即可得答案.【题目详解】∵x=1是一元二次方程mx2–2=0的一个解,∴m-2=0,解得:m=2,故选:B.【题目点拨】本题考查一元二次方程的解的定义,把求未知系数的问题转化为方程求解的问题,能够使方程左右两边相等的未知数的值叫做方程的解;熟练掌握定义是解题关键.11、D【分析】本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.【题目详解】△ABC中,∵AF∥DE,∴△CDE∽△CAF,∵D为AC中点,∴CD:CA=1:2,∴S△CDE:S△CAF=(CD:CA)2=1:4,∴S△CDE:S梯形AFED=1:3,又∵S△ABF:S梯形AFED=1:3,∴S△ABF:S△CDE=1:1.故选D.【题目点拨】本题考查了中点的定义,相似三角形的判定与性质,根据相似三角形的性质得出S△CDE:S△CAF=1:4是解题的关键.12、C【解题分析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.二、填空题(每题4分,共24分)13、3【解题分析】根据等比性质求解即可.【题目详解】∵ab∴a+cb+d=a故答案为:34【题目点拨】本题考查了比例的性质,主要利用了等比性质.等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等.对于实数a,b,c,d,且有b≠0,d≠0,如果ab=c14、1.【分析】利用垂径定理和中位线的性质即可求解.【题目详解】∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=1.故答案为115、1【解题分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【题目详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【题目点拨】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.16、0或1.【分析】当k=0时,函数为一次函数,满足条件;当k≠0时,利用判别式的意义得到当△=0时抛物线与x轴只有一个交点,求出此时k的值即可.【题目详解】当k=0时,函数解析式为y=﹣2x+1,此一次函数与x轴只有一个交点;当k≠0时,△=(﹣2)2﹣4k=0,解得k=1,此时抛物线与x轴只有一个交点,综上所述,k的值为0或1.故答案为0或1.【题目点拨】本题考查了抛物线与x轴的交点问题,注意要分情况讨论.17、3.【分析】根据根的判别式即可求出答案.【题目详解】由题意可知:△=4﹣4(m﹣2)≥0,∴m≤3.故答案为:3.【题目点拨】考核知识点:一元二次方程根判别式.熟记根判别式是关键.18、-6【分析】易知点A与点C关于原点O中心对称,由平行四边形的性质可知点B和点D关于原点O对称,根据关于原点对称横纵坐标都互为相反数可得点B、点C坐标,求解即可.【题目详解】解:根据题意得点A与点C关于原点O中心对称,点B和点D关于原点O对称故答案为:【题目点拨】本题考查了平面直角坐标系中的中心对称,正确理解题意是解题的关键.三、解答题(共78分)19、-4【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【题目详解】解::|1﹣|+(2019﹣50)0﹣()﹣2=﹣1+1﹣4=﹣4【题目点拨】此题主要考查实数的运算,解题的关键是熟知实数的性质.20、5【解题分析】(1)依据勾股定理即可得到OA的长;(2)取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.【题目详解】解:(1)由勾股定理,可得AO==5,故答案为5;(2)如图,取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;如图,取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【题目点拨】本题考查作图﹣复杂作图、角平分线的性质等知识,解题的关键是熟练掌握等腰三角形的性质的应用,角平分线的性质的应用,勾股定理以及相似三角形的性质.21、(1)证明见解析;(2)的半径为2.1.【分析】(1)连接,,过作于点,根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定理即可证出结论;(2)连接,过作于点,根据平行线的判定证出,证出,根据角平分线的性质可得,然后利用HL证出,从而得出,设的半径为,根据勾股定理列出方程即可求出结论.【题目详解】(1)证明:如图,连接,,过作于点.∵,是底边的中点,∴,∵是的切线,∴,∴.∴是的切线;(2)解:如图2,连接,过作于点.∵点是的中点,∴,∴∴,∴在和中,∴∴设的半径为由勾股定理得:DK2+OK2=OD2即,解得:.∴的半径为.【题目点拨】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理是解决此题的关键.22、(1)见解析;(2)见解析【分析】(1)根据平行线的性质得∠B=∠C,然后由两个角对应相等,即可证明两个三角形相似;(2)由(1)△AFE∽△BFA,得到,即可得到结论成立.【题目详解】解:证明:(1)∵AB∥CD(已知),∴∠B=∠C(两直线平行内错角相等),又∠EAF=∠C(已知),∴∠B=∠EAF(等量代换),又∠AFE=∠BFA(公共角),∴△AFE∽△BFA(两对对应角相等的两三角形相似)(2)由(1)得到△AFE∽△BFA,∴,即AF2=EF·FB.【题目点拨】本题考查了相似三角形的判定和性质,平行线的性质,解题的关键是熟练掌握相似三角形的判定和性质进行解题.23、(1)见解析;(2),证明见解析;(3)【分析】(1)连结OD,先由已知△ABD是等腰直角三角形,得DO⊥AB,再根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)由“一线三垂直模型”易得,进而可得.(3)利用勾股定理依次可求直径AB=10,,,得,再证明可得,,进而由求得PD即可.【题目详解】(1)证明:连结,如图,∵为的直径,∴,∵的平分线交于点,∴,∴,∴为等腰直角三角形,∴,∵为的切线,∴,∴;(2)答:,证明如下:∵是的直径,∴,∵,,∴,∴,∴,∵,∴,在和中,∴,∴,,∴,即.(3)解:在中,,∵为等腰直角三角形,∴∵,∴为等腰直角三角形,∴,在中,,∴,∵,,∴,∴,∴,,而,∴,∴.【题目点拨】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.解题关键是抓住45°角得等腰直角三角形进行解答.24、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(175【解题分析】(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4x,求出n=1,然后把把A(1,4)、(4,1)代入y=(2)根据图像解答即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.【题目详解】解:(1)把A(1,4)代入y=mx,得:m=4∴反比例函数的解析式为y=4x把B(4,n)代入y=4x,得:n=1∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=4x∴当x>0时,kx+b<mx的解集为0<x<1或x>4(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴p+q=44p+q=-1解得p=-5∴直线AB′的解析式为y=-5令y=0,得-5解得x=175∴点P的坐标为(175,0【题目点拨】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.25、(1)证明见解析;(2)AM=DE+BM成立,证明见解析;(3)①结论AM=AD+MC仍然成立;②结论AM=DE+BM不成立.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,易证△ADE≌△NCE,得到AD=CN,再证明AM=NM即可;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年现代农业示范区闲置土地租赁合同3篇
- 2025食堂粮油采购合同模板
- 过道灯项目立项申请报告
- 热轧型钢项目立项申请报告
- 甲酸丙酯项目立项申请报告
- 隔离栅、栏、网投资规划项目建议书
- 新建普通夹芯板项目立项申请报告
- 模切机生产加工项目可行性研究报告
- 浙教版数学八年级上册 期末试卷
- 2024年度精装图书编纂印刷项目委托协议3篇
- GB/T 44979-2024智慧城市基础设施紧凑型城市智慧交通
- 统编版2024-2025学年第一学期四年级语文期末学业质量监测试卷(含答案)
- 北师大版七年级上册数学期末考试试题附答案
- 理论力学知到智慧树章节测试课后答案2024年秋浙江大学
- 管理英语1-001-国开机考复习资料
- 《血管活性药物静脉输注护理》团体标准解读
- 机器学习-梯度下降法
- 期末综合测试卷(试题)-2024-2025学年四年级上册数学人教版
- 浙江省学军、镇海等名校2025届高考数学押题试卷含解析
- 个人消费贷款保证合同模板
- 黑龙江省哈尔滨市2023-2024学年七年级上学期期末统考学业水平调研测试语文试卷(解析版)
评论
0/150
提交评论