![2024届江苏省镇江市宜城中学数学九上期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view/483b63538bab4523c72a5af970f3e9c0/483b63538bab4523c72a5af970f3e9c01.gif)
![2024届江苏省镇江市宜城中学数学九上期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view/483b63538bab4523c72a5af970f3e9c0/483b63538bab4523c72a5af970f3e9c02.gif)
![2024届江苏省镇江市宜城中学数学九上期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view/483b63538bab4523c72a5af970f3e9c0/483b63538bab4523c72a5af970f3e9c03.gif)
![2024届江苏省镇江市宜城中学数学九上期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view/483b63538bab4523c72a5af970f3e9c0/483b63538bab4523c72a5af970f3e9c04.gif)
![2024届江苏省镇江市宜城中学数学九上期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view/483b63538bab4523c72a5af970f3e9c0/483b63538bab4523c72a5af970f3e9c05.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省镇江市宜城中学数学九上期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是()A.(2,0) B.(-3,0) C.(-2,0) D.(3,0)2.某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=2403.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B.C. D.4.已知二次函数y=-x2+2mx+2,当x<-2时,y的值随x的增大而增大,则实数m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-25.在▱ABCD中,∠ACB=25°,现将▱ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数()A.135° B.120° C.115° D.100°6.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为,,,.自由转动转盘,则下面说法错误的是()A.若,则指针落在红色区域的概率大于0.25B.若,则指针落在红色区域的概率大于0.5C.若,则指针落在红色或黄色区域的概率和为0.5D.若,则指针落在红色或黄色区域的概率和为0.57.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0 B.-3a+c<0C.b2-4ac≥0 D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c8.如图,将绕点旋转得到,设点的坐标为,则点的坐标为()A. B.C. D.9.已知二次函数,当时,该函数取最大值8.设该函数图象与轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.10.将抛物线向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A. B.C. D.11.如图,已知在ΔABC中,DE∥BC,则以下式子不正确的是()A. B. C. D.12.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOCC.CD=BC D.BC•CD=AC•OA二、填空题(每题4分,共24分)13.如图,在中,,,以为直角边、为直角顶点作等腰直角三角形,则______.14.如图,在圆中,是弦,点是劣弧的中点,联结,平分,联结、,那么__________度.15.函数y=—(x-1)2+2图像上有两点A(3,y1)、B(—4,y,),则y1______y2(填“<”、“>”或“=”).16.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=2:3,则△ADE与△ABC的面积之比为________.17.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若=,则的值为_____.18.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为,则x=_______.三、解答题(共78分)19.(8分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.20.(8分)化简:,并从中取一个合适的整数代入求值.21.(8分)如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.22.(10分)已知:如图,⊙O的直径AB与弦CD相交于点E,且E为CD中点,过点B作CD的平行线交弦AD的延长线于点F.(1)求证:BF是⊙O的切线;(2)连结BC,若⊙O的半径为2,tan∠BCD=,求线段AD的长.23.(10分)关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根①_______方程有两个不相等的正实根②③____________(1)请将表格中①②③补充完整;(2)已知关于的方程,若方程的两根都是正数,求的取值范围.24.(10分)已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.25.(12分)如图,的顶点坐标分别为,,.(1)画出关于点的中心对称图形;(2)画出绕原点逆时针旋转的,直接写出点的坐标为_________;(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为____________.(用含,的式子表示)26.如图,为的直径,点为延长线上的一点,过点作的切线,切点为,过两点分别作的垂线,垂足分别为,连接.求证:(1)平分;(2)若,求的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】求出点(-1,0)关于直线的对称点,对称点的坐标即为图象与轴的另一个交点坐标.【题目详解】由题意得,另一个交点与交点(-1,0)关于直线对称设另一个交点坐标为(x,0)则有解得另一个交点坐标为(3,0)故答案为:D.【题目点拨】本题考查了二次函数的对称问题,掌握轴对称图象的性质是解题的关键.2、B【分析】设二、三月份的平均增长率为x,则二月份的生产量为100×(1+x),三月份的生产量为100×(1+x)(1+x),根据二月份的生产量+三月份的生产量=1台,列出方程即可.【题目详解】设二、三月份的平均增长率为x,则二月份的生产量为100×(1+x),三月份的生产量为100×(1+x)(1+x),根据题意,得100(1+x)+100(1+x)2=1.故选B.【题目点拨】本题考查了由实际问题抽象出一元二次方程的知识,设出未知数,正确找出等量关系是解决问题的关键.3、D【解题分析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.4、C【解题分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【题目详解】解:抛物线的对称轴为直线∵,抛物线开口向下,∴当时,y的值随x值的增大而增大,∵当时,y的值随x值的增大而增大,∴,故选:C.【题目点拨】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5、C【题目详解】解:根据图形的折叠可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故选C.考点:1.平行四边形的性质2.图形的折叠的性质.6、C【分析】根据概率公式计算即可得到结论.【题目详解】解:A、∵α>90°,,故A正确;B、∵α+β+γ+θ=360°,α>β+γ+θ,,故B正确;C、∵α-β=γ-θ,
∴α+θ=β+γ,∵α+β+γ+θ=360°,
∴α+θ=β+γ=180°,∴指针落在红色或紫色区域的概率和为0.5,故C错误;
D、∵γ+θ=180°,
∴α+β=180°,∴指针落在红色或黄色区域的概率和为0.5,故D正确;
故选:C.【题目点拨】本题考查了概率公式,熟练掌握概率公式是解题的关键.7、B【解题分析】解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,∴向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选B.8、B【分析】由题意可知,点C为线段A的中点,故可根据中点坐标公式求解.对本题而言,旋转后的纵坐标与旋转前的纵坐标互为相反数,(旋转后的横坐标+旋转前的横坐标)÷2=-1,据此求解即可.【题目详解】解:∵绕点旋转得到,点的坐标为,∴旋转后点A的对应点的横坐标为:,纵坐标为-b,所以旋转后点的坐标为:.故选:B.【题目点拨】本题考查了旋转变换后点的坐标规律探求,属于常见题型,掌握求解的方法是解题的关键.9、B【分析】利用函数与x轴的交点,求出横坐标,根据开口方向、以及列出不等式组,解不等式组即可.【题目详解】∵二次函数,当时,该函数取最大值8∴,当y=0时,∴∵∴∴∴故选:B【题目点拨】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.10、D【分析】先得到抛物线y=x2-2的顶点坐标为(0,-2),再把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【题目详解】解:抛物线y=x2-2的顶点坐标为(0,-2),把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),
所以平移后抛物线的解析式为y=(x+3)2+1,
故选:D.【题目点拨】本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式,然后把抛物线的平移问题转化为顶点的平移问题.11、D【分析】由DE∥BC可以推得ΔADE~ΔABC,再由相似三角形的性质出发可以判断各选项的对错.【题目详解】∵DE∥BC,∴ΔADE~ΔABC,所以有:A、,正确;B、由A得,即,正确;C、,即,正确;D、,即,错误.故选D.【题目点拨】本题考查三角形相似的判定与性质,根据三角形相似的性质写出有关线段的比例式是解题关键.12、D【分析】直接利用相似三角形的判定方法分别分析得出答案.【题目详解】解:∵∠DAC=∠DBC,∠AOD=∠BOC,∴∽,故A不符合题意;∵∽,∴AO:OD=OB:OC,∵∠AOB=∠DOC,∴∽,故B不符合题意;∵∽,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC=∠DBC,∴∠CDB=∠DBC,∴CD=BC;没有条件可以证明,故选D.【题目点拨】本题考查了相似三角形的判定与性质,解题关键在于熟练掌握相似三角形的判定方法①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.二、填空题(每题4分,共24分)13、1【分析】由于AD=AB,∠CAD=90°,则可将△ABD绕点A逆时针旋转90°得△ABE,如图,根据旋转的性质得∠CAE=90°,AC=AE,BE=CD,于是可判断△ACE为等腰直角三角形,则∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理计算出BE=1,从而得到CD=1.【题目详解】解:∵△ADB为等腰直角三角形,∴AD=AB,∠BAD=90°,将△ACD绕点A顺时针旋转90°得△AEB,如图,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE为等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案为1.【题目点拨】本题考查了旋转的性质,等腰直角三角形的判定与性质,以及勾股定理等知识.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.14、120【分析】连接AC,证明△AOC是等边三角形,得出的度数.【题目详解】连接AC∵点C是的中点∴∵,∴AB平分OC∴AB是线段OC的垂直平分线∴∵∴∴△AOC是等边三角形∴∴∴故答案为.【题目点拨】本题考查了等边三角形的判定定理,从而得出目标角的度数.15、>【分析】由题意可知二次函数的解析式,且已知A、B两点的横坐标,将两点横坐标分别代入二次函数解析式求出y1、y1的值,再比较大小即可.【题目详解】解:把A(3,y1)、B(-4,y1)代入二次函数y=—(x-1)1+1得,y1=-(3-1)1+1=-1;y1=-(-4-1)1+1=-13,所以y1>y1.故答案为>.【题目点拨】本题考查二次函数图象上点的坐标相关特征,熟练掌握二次函数图象上点的坐标符合函数解析式是解题关键.16、4:1【解题分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【题目详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案为:4:1.【题目点拨】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.17、.【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【题目详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB=AF,∴,∵AD∥BC,∴△AFE∽△CBE,∴,∴;故答案为:.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.18、1【分析】直接以概率求法得出关于x的等式进而得出答案.【题目详解】解:由题意得:,解得,故答案为:1.【题目点拨】本题考查了概率的意义,正确把握概率的求解公式是解题的关键.三、解答题(共78分)19、(3)a=,方程的另一根为;(2)答案见解析.【解题分析】(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【题目详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根为;(2)①当a=3时,方程为2x=3,解得:x=3.②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.当a=2时,原方程为:x2+2x+3=3,解得:x3=x2=-3;当a=3时,原方程为:-x2+2x-3=3,解得:x3=x2=3.综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.20、-x-1,-1.【分析】先将原分式化简,然后根据分式有意义的条件代入适当的值即可.【题目详解】解:原式当时(不能取-1或1,否则无意义)原式.【题目点拨】此题考查的是分式的化简求值题,掌握分式的运算法则和分式有意义的条件是解决此题的关键.21、菱形的高是9.6cm,面积是96cm1.【解题分析】根据菱形的对角线互相垂直平分,利用勾股定理求出AC与BD的长,再由菱形面积公式求出所求即可.【题目详解】解:∵BD:AC=3:4,∴设BD=3x,AC=4x,∴BO=,AO=1x,又∵AB1=BO1+AO1,∴AB=x,∵菱形的周长是40cm,∴AB=40÷4=10cm,即x=10,∴x=4,∴BD=11cm,AC=16cm,∴S▱ABCD=BD•AC=×11×16=96(cm1),又∵S▱ABCD=AB•h,∴h==9.6(cm),答:菱形的高是9.6cm,面积是96cm1.【题目点拨】此题考查了菱形的性质,勾股定理,熟练掌握菱形的性质是解本题的关键.22、(1)见解析;(2)【分析】(1)由垂径定理可证AB⊥CD,由CD∥BF,得AB⊥BF,则BF是⊙O的切线;(2)连接BD,根据同弧所对圆周角相等得到∠BCD=∠BAD,再利用圆的性质得到∠ADB=90°,tan∠BCD=tan∠BAD=,得到BD与AD的关系,再利用解直角三角形可以得到BD、AD与半径的关系,进一步求解即可得到答案.【题目详解】(1)证明:∵⊙O的直径AB与弦CD相交于点E,且E为CD中点∴AB⊥CD,∠AED=90°∵CD//BF∴∠ABF=∠AED=90°∴AB⊥BF∵AB是⊙O的直径∴BF是⊙O的切线(2)解:连接BD∵∠BCD、∠BAD是同弧所对圆周角∴∠BCD=∠BAD∵AB是⊙O的直径∴∠ADB=90°∵tan∠BCD=tan∠BAD=∴∴设BD=3x,AD=4x∴AB=5x∵⊙O的半径为2,AB=4∴5x=4,x=∴AD=4x=【题目点拨】本题考查了切线的判定与性质,垂径定理,圆周角定理,解直角三角形的知识.关键是利用圆周角定理将已知角进行转化,利用直径证明直角三角形.23、(1)①方程有一个负实根,一个正实根;②详见解析;③;(2)【分析】(1)根据函数的图象与性质即可得;(2)先求出方程的根的判别式,再利用③即可得出答案.【题目详解】(1)由函数的图象与性质得:①函数图象与x的负半轴和正半轴各有一个交点,则方程有一个负实根,一个正实根;②函数图象与x轴的两个交点均在x轴的正半轴上,画图如下所示:;③由②可得:;(2)方程的根的判别式为,则此方程有两个不相等的实数根由题意,可利用③得:,解得则方程组的解为故k的取值范围是.【题目点拨】本题考查了一元二次方程与二次函数的关系,掌握二次函数的图象与性质是解题关键.24、(1)m<1;(2)m<0【分析】(1)根据题意可知一元二次方程有两个不相等的实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木工班合同(二次结构)
- 2025年度办事处装修与办公家具采购及维护服务合同
- 2025年度办公室文件消毒与消毒剂研发与品牌合作合同
- 2025年度安全生产应急处理与事故处理服务合同
- 报社阳台照明设备节能改造合同2025
- 2025年也门文版办公室租赁合同(含品牌形象推广)
- 艺术馆花园整修合同样本
- 消防二次改造施工合同
- 三农村医疗卫生服务规范指南
- 三农田管理最佳实践方案与指南
- 医院感染及其危害
- 2025年三人合伙投资合作开店合同模板(三篇)
- 安徽省招生考试数学试卷
- 2024全国各省高考诗歌鉴赏真题及解析
- 高考日语阅读理解练习2篇-高考日语复习
- 印刷基础知识培训资料
- NB/T 11536-2024煤矿带压开采底板井下注浆加固改造技术规范
- 2024-2025学年人教版五年级(上)英语寒假作业(一)
- 【课件】九年级化学下册(人教版2024)-【新教材解读】义务教育教材内容解读课件
- GA/T 761-2024停车库(场)安全管理系统技术要求
- 2025届贵州省六盘水市第二中学高三适应性调研考试数学试题含解析
评论
0/150
提交评论