




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AircraftSchoolofAeronauticsandAstronauticsShanghaiJiaoTongUniversityOverviewof RefinedweightThrust/WeightratioandwingLandinggearandAircraftPowerStabilityandLoads,materialsandstructures14\15Performance(a,b)AviationMilitaryaircraftdesign–DesignAdvanceddesigntopics(flighttests,retrofit,RoleofperformanceBasicconceptsandPerformanceanalysisfordifferentsegmentsinatypicalflightmission,includingTakeoffSteadylevelSteadyclimbinganddescendingLevelturningGlidingLandingAircraftperformanceanalysistreataircraftasapointmass,notarigidbodyasisdoneinaircraftstabilityAircraftperformancecalculationformsanimportantpartofconceptualdesign,whichlinksdesignparameterswithperformancerequirementsAerodynamicAerodynamicEngineRoleofPerformanceThroughouttheaircraftlifecyclefrommanufacture,flighttesttoProjectdesignstage→requirementanalysis,enginedata(thrust,SFC),etcDetaileddesign→windtunneldata,CFD,CADdrawings,certificationdata,operationalmanual,flighttestplanManufacture→validationofdesign,fullsetoftechnicalmanualsFlighttests→Crossvalidationwithwindtunneldata,certificatedocuments,faultanalysisInputs/OutputsforPerformanceCalculationsAerodynamicforcesfromengineeringestimationmethods/CFD/wingtunneldataEnginedatafromengineWeightestimationincludingC.G.locationsfrominitialsizingTakeoffandinitialClimbtooperatingApproachandPayloadrangeBasicBasicConcepts–𝑉𝐺:Groundspeed,theaircraftspeedrelativetotheground.ItcalculatedfromTASandwindspeedFortakeoffandlanding,headwindtakeForclimb,cruise,anddescend,headwindtake----Groundspeed,trueairspeedand AirspeedasafunctionofBasicConcepts– In±±𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝐶𝐴𝑆= ±𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛±𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑉𝑉𝐸≡𝐶𝐴𝑆−𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑇𝐴𝑆BasicConcepts–(Geometry)altitude(𝐻)–theabsolutealtitudeaboveseaPressurealtitude(𝐻𝑃),theISA(geometry)altitudewiththesamepressurelevelForahotday,lowerthangeometryForcoldday,higherthangeometry𝑯=𝐻=𝐻𝑃−𝐻=𝐻𝑃−𝑯=
1−2.25577× 𝑚1−6.87559× 𝐻𝐻
11
𝐻𝑃−𝐻𝑃BasicEquationsofXd,Yd, yrxzBasicEquationsofMotionEquationsofmotioninflightpathcoordinateBody γDHorizontal TypicalFlightProfileofaCivilJet
10000
15001500
M= 20000
爬 爬 巡
进场与滑降
轮档时间Take-offTakeoffVs:stallspeed(intake-offV1:criticalpowerfailureVR:rotationspeed,thiscanequalVmu:minimumunstickspeed,VRmaynotbesufficienttoliftoffduetolimitonrotationangleVLOF:lift-offspeed,theaircraftbecomesV2:take-offclimbspeed,achievedat35ftscreenTake-off Availabletake-offTake-offOptionswithEngineTake-off-allenginesoperatingTDMdVdt RMgTD(MgTake-off-allenginesoperatingGroundrolldistancecanbecomputedbyApproximationcanbeassumedT
5 5VWstatic40.020.01cL,max,t
DW
𝜆isBPRoftheturbofanTake-offallenginesoperatingTransitionflightTake-off-allenginesoperating TransitiontoAircraftacceleratefromVLOFtoSimpleestimationcanbemadebyassumingFlyingalonganLMgcosMV rV
/[g(n ScreenheightTake-offDistance-allenginesoperating(IV)Take-offdistance-allenginesoperating(V)ClimbaftertransitiontoscreenClimbdistance:thegrounddistancefromtheendoftransitiontothescreenheightwhere,htistheheightattheendoftransition,γcisthebestclimbangleTotaldistancefortake-offisthesumofgroundroll,transition,andclimbdistanceTake-offdistance–withoneenginefailedBalancedfieldDefinition:thefieldlengthwhen“accelerate-go”distanceisequaltothe“accelerate-stop”SteadyClimb&DescendTypicalClimbProfileandZ0
constantMachnumberairspeedclimbairspeedclimb ClimbcarriedoutmainlyatconstantequivalentairspeedInitialClimbto1500ftafterTakeoffInitialclimbistypicallydividedintofourAirworthinessdemandscertainclimbgradientwithoneenginefailurefortwinengineorfourengineaircraft–refertocertificationcodeTake-offclimbperformanceisusuallydefinedbysecondsegmentperformancerequirementwhichisthemostcriticalInitialClimbto1500ftafterTakeoffClimbrate(verticalvelocity)canbeobtainedbyanalyzing WTherefore,theclimbrateisrelatedtothrust,drag,andweightoftheaircraftThrustis85%ofthestaticDragofthebasicTheasymmetricdragduetoafailedwindmilldrag,Additionaltrimdrag,5%ofthebasicprofileClimbPerformance:furtherGivenaclimb
=𝑐𝑜𝑠𝜃+𝑠𝑖𝑛𝜃≅1+
𝑉 BestrateofclimbandBestangleofBestrateofclimbprovidesthemaxclimbBestangleofclimbprovidesthemaxclimbTimetoclimbandfueltoTimetoclimeacertaindistanceandcorrespondingfuelusedcanbecalculatedas𝑑𝑡
𝑑𝑊𝑓=Integrationorapproximationcanbeusedtocalculatefrom𝑡1toSteadyLevelEquationsforLevelLαLαVDHorizontal TW RateofchangeofaircraftT=D+Wsinγ=DL=Wcosγ=W
dW
SteadyLevelCruiseAnalysisforunacceleratinglevel
𝑇=𝐷= 𝐿=𝑊= 𝑉 and
=
=
TheseequationscanbeusedinfurtherMinimumcruisethrustrequirementforjetMinimumcruisepowerrequirementforpropellerThrustrequiredforlevelflightjetMinimumthrustforgivenaircraftweightcanbefoundfrom
𝜕 =𝜌𝑉𝐶𝐷0− = 𝑆12𝑉min𝑡ℎ𝑟𝑢𝑠𝑡 and𝐶𝐿𝑚𝑖𝑛𝑡ℎ𝑟𝑢𝑠𝑡AtAtanygivenweight,theaircraftcanbeflownattheoptimalliftcoefficientforminimumdragbyvaryingvelocityorairdensityQuestionQuestionone:WhatisformulafortotalThrustrequiredforlevelflightpropellerMinimumpowerrequiredforpropelleraircraftcanbederivedbyfirstcalculatethepower𝑃=𝐷𝑉= 𝜌𝑉3𝑆𝐶𝐷0+
𝑉 2 2Similartothederivationonprevious
22 𝜌𝑉2𝑆𝐶𝐷0− =22
𝜌𝑉2= and=Questionone:WhatisformulafortotalQuestionQuestiontwo:Willthetotaldragbehigherthanflyingatminthrust?CalculationsonprevioustwoslidesareCalculationsonprevioustwoslidesarebasedontwoassumptions𝐶𝐷0and𝐾areconstantwith𝑉BreguetRangeRateofweight dW
SFCTSFCDWsin
SFC
SFC
L dW
R L aML R dx0
SFC1
<<1,becauseBreguetEquations-DuringSFCremainsroughlyconstant(0.5ConstantL/DalsoroughlyCruisingintropopause,a= W2aMLD WR dx
RaMLD 1
2PayloadRange Rangeisrelatedtofuel/weightaML
W aML
WFR
logW2
log1W 1
1MaximumMaximumMaximumfuel MaximumtakeoffRangeMoreAnalysison Minimumthrustlevel= and=𝐷=𝑞𝑆 + =𝑞𝑆 +Minimumpowerlevel= and=𝐷=𝑞𝑆 + =𝑞𝑆 +Thevelocityforminimumpoweris~0.76timesthevelocityforminimumthrustcruise,whileliftcoefficientis~73%higherThevelocityforminimumpoweris~0.76timesthevelocityforminimumthrustcruise,whileliftcoefficientis~73%higherforminimumpowerflight.Buttotaldragforminpowerisnottwicethatformindrag!LevelTurningAnalysisofLevel Turningrateorrateofturning(ROT)DefinedasradialaccelerationdividedbythevelocityAngularForceVerticalliftcomponentequalsLoadfactorisThereforeturning= =𝜓 𝑔 AnalysisofLevelTurningTurning𝑅
–SmallerVandhighergivessmallerTwotypesofturning,dependsontimeperiodInstantaneous,forshortperiodoftimeSustainedturning,foranextendedperiodoftimeInstantaneousInstantaneousturn–aircraftisallowedtoslowdownduringtheturnTheloadfactor𝑛willonlybelimitedbythemaximumliftcoefficient(stall)orstructuralstrengthCornerspeedisimportantfordogfightDragisgreaterthanthrusthigherthanInsustainedturning,theaircraftisnotallowedtoslowdownorlosealtitude,whichimpliesthat𝑇=𝐷and𝐿=𝑇=𝐷=
with𝐶𝐿
tosolvethisasKandnarebothfunctionsoftheCLtosolvethisasKandnarebothfunctionsoftheCL−−ThisgivestheloadfactorSustainedTurningInasustainedturninggivenflightconditions(speed,altitude,payload),nMaximumnMaximumncanbeachievedwithminFromminimumdraglevelflightanalysis,there𝑉min and𝐶𝐿𝑚𝑖𝑛 Themaximumsustained-turnloadfactorcanbesolved𝐿=𝑛𝑊=
𝜓
𝑛=
GlidingStraightGliding ConditionsforstraightglidingThethrustissettoThedirectionoftheglidingangleis𝐷= 𝐿= =ctan𝛾 HorizontalαGlideGlideratioisdefinedastheratiobetweenhorizontaldistancetravelledandaltitudelostGlideratioisequaltothelift-to-dragMaxglideratiogivesthemaximumrangeforglidingflight,thereforerequiresflyingatmaxL/D–minCD𝑉min and𝐶𝐿𝑚𝑖𝑛 SinkAnotherparametersofinterestforglidingDeterminethetimethataglidermayremaininthe𝑊2cos3𝑊2cos3𝑣=Vsinγ=sin 𝑆𝑆Minimumsinkratecanbeobtainedbyminimizing whichleadsinin=3=00SinkRateandGlide DifferencebetweensinkrateandglideLandingApproachandLandingThelandingphaseissplitintoseveralGroundLandingdistanceisthesumofdistancesrequired Theapproachpathistypicallymadeat3°totheFARcertificationspecifiestheapproachstartsatascreenheightof50ftandendsattheflareheighthFApproachspeedisSAobstacleheighthF/tanhFrAA/Flare–AirAsimplifiedapproachassumesthattheangularaccelerationmaybeignoredTT–D+Wγ=mVdV/dx=(W/2g)dV2/dxL–W=0SaSa=[(W/S)l/(4gρslбCL,lmax)]/[–(D/L)eff+RotationtoTouchGroundRunlOnthesimplestlevel,assumingconstantdeceleration(-a),thedistancecoveredfromVl2to0is V2/2alOnthenextddV/dt=(1/2g)dV2/dx=(T/W)l–(D/W)l–((D/W)l((Fbrake/W)l=mbrake(1-L/W)=mbrake[1–GrounddistancecanbecomputedfromOtherAircraftPerformanceCommonsetofperformanceTurnrate,cornerspeed,loadfactorOtherperformancemeasuresofControlspeedandaltitudePoststallbehavior,60-degreeAOAoperations,forexamplearetypicalfor4thgenerationfightersPerformancewithThrustStoreDynamicMostImportantAircraftPerformanceCharacteristicsCapabilitiesofaircraftcanbemostlyrepresentedMaximumStallingBestingclimbingBestglideRateofMa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论