安徽省阜阳临泉县联考2024届九年级数学第一学期期末预测试题含解析_第1页
安徽省阜阳临泉县联考2024届九年级数学第一学期期末预测试题含解析_第2页
安徽省阜阳临泉县联考2024届九年级数学第一学期期末预测试题含解析_第3页
安徽省阜阳临泉县联考2024届九年级数学第一学期期末预测试题含解析_第4页
安徽省阜阳临泉县联考2024届九年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳临泉县联考2024届九年级数学第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在正方形ABCD中,AB=4,AC与相交于点O,N是AO的中点,点M在BC边上,P是OD的中点,过点P作PM⊥BC于点M,交于点N′,则PN-MN′的值为()A. B. C. D.2.如图,以点A为中心,把△ABC逆时针旋转m°,得到△AB′C′(点B、C的对应点分别为点B′、C′),连接BB′,若AC′∥BB′,则∠CAB′的度数为()A. B. C. D.3.正八边形的中心角为()A.45° B.60° C.80° D.90°4.如图,在Rt△ABC中,AC=6,AB=10,则sinA的值()A. B. C. D.5.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:①若,则;②若点与在该抛物线上,当时,则;③关于的一元二次方程有实数解.其中正确结论的个数是()A. B. C. D.6.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A. B. C. D.7.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x, y=x2-3A.14B.12C.38.解方程最适当的方法是()A.直接开平方法 B.配方法 C.因式分解法 D.公式法9.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,CE,若∠CBD=32°,则∠BEC的大小为()A.64° B.120° C.122° D.128°10.某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x,则下列所列方程正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在中,,于点,,,则_________;12.如图,在由边长为1的小正方形组成的网格中.点A,B,C,D都在这些小正方形的格点上,AB、CD相交于点E,则sin∠AEC的值为_____.13.已知实数x,y满足,则x+y的最大值为_______.14.如图,点把弧分成三等分,是⊙的切线,过点分别作半径的垂线段,已知,,则图中阴影部分的面积是________.15.观察下列各数:,,,,,……按此规律写出的第个数是______,第个数是______.16.比较大小:______4.17.一个反比例函数的图像过点,则这个反比例函数的表达式为__________.18.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.三、解答题(共66分)19.(10分)参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:…-4-3-2-11234……124-4-2-1……235-3-20…描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当时,随的增大而______;(“增大”或“减小”)②的图象是由的图象向______平移______个单位而得到的;③图象关于点______中心对称.(填点的坐标)(3)函数与直线交于点,,求的面积.20.(6分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.21.(6分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.22.(8分)在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.(1)如图①,当时,求点的坐标;(2)如图②,当点落在的延长线上时,求点的坐标;(3)当点落在线段上时,求点的坐标(直接写出结果即可).23.(8分)三个小球上分别标有数字﹣2,﹣1,3,它们除数字外其余全部相同,现将它们放在一个不透明的袋子里,从袋子中随机地摸出一球,将球上的数字记录,记为m,然后放回;再随机地摸取一球,将球上的数字记录,记为n,这样确定了点(m,n).(1)请列表或画出树状图,并根据列表或树状图写出点(m,n)所有可能的结果;(2)求点(m,n)在函数y=x的图象上的概率.24.(8分)如图,在和中,,点为射线,的交点.(1)问题提出:如图1,若,.①与的数量关系为________;②的度数为________.(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.25.(10分)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.26.(10分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据正方形的性质可得点O为AC的中点,根据三角形中位线的性质可求出PN的长,由PM⊥BC可得PM//CD,根据点P为OD中点可得点N′为OC中点,即可得出AC=4CN′,根据MN′//AB可得△CMN′∽△CBA,根据相似三角形的性质可求出MN′的长,进而可求出PN-MN′的长.【题目详解】∵四边形ABCD是正方形,AB=4,∴OA=OC,AD=AB=4,∵N是AO的中点,P是OD的中点,∴PN是△AOD的中位线,∴PN=AD=2,∵PM⊥BC,∴PM//CD//AB,∴点N′为OC的中点,∴AC=4CN′,∵PM//AB,∴△CMN′∽△CBA,∴,∴MN′=1,∴PN-MN′=2-1=1,故选:A.【题目点拨】本题考查正方形的性质、三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握三角形中位线的性质及相似三角形的判定定理是解题关键.2、B【分析】根据旋转的性质可得、,利用等腰三角形的性质可求得,再根据平行线的性质得出,最后由角的和差得出结论.【题目详解】解:∵以点为中心,把逆时针旋转,得到∴,∴∵∴∴故选:B【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等;也考查了等腰三角形的性质,三角形的内角和定理,平行线的性质及角的和差.3、A【分析】根据中心角是正多边形的外接圆相邻的两个半径的夹角,即可求解.【题目详解】∵360°÷8=45°,∴正八边形的中心角为45°,故选:A.【题目点拨】本题主要考查正八边形的中心角的定义,理解正八边形的外接圆相邻的两个半径的夹角是中心角,是解题的关键.4、A【分析】根据勾股定理得出BC的长,再根据sinA=代值计算即可.【题目详解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故选:A.【题目点拨】本题考查勾股定理及正弦的定义,熟练掌握正弦的表示是解题的关键.5、C【分析】利用二次函数的性质一一进行判断即可得出答案.【题目详解】解:①抛物线(其中是常数,)顶点坐标为,,,,∴c>>0.故①小题结论正确;②顶点坐标为,点关于抛物线的对称轴的对称点为点与在该抛物线上,,,,当时,随的增大而增大,故此小题结论正确;③把顶点坐标代入抛物线中,得,一元二次方程中,,关于的一元二次方程无实数解.故此小题错误.故选:C.【题目点拨】本题是一道关于二次函数的综合性题目,具有一定的难度,需要学生熟练掌握二次函数的性质并能够熟练运用.6、B【解题分析】先求出球的总个数,根据概率公式解答即可.【题目详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是.故选B.【题目点拨】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.7、C【解题分析】分析:从四张卡片中,抽出y随x的增大而增大的有y=2x, ∵四张卡片中,抽出y随x的增大而增大的有y=2x, ∴取出的卡片上的函数是y随x的增大而增大的概率是348、C【分析】根据解一元二次方程的方法进行判断.【题目详解】解:先移项得到,然后利用因式分解法解方程.故选:C.【题目点拨】本题考查了解一元二次方程——因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.9、C【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【题目详解】在⊙O中,∵∠CBD=32°,

∴∠CAD=32°,

∵点E是△ABC的内心,

∴∠BAC=64°,

∴∠EBC+∠ECB=(180°-64°)÷2=58°,

∴∠BEC=180°-58°=122°.

故选:C.【题目点拨】本题考查了三角形的内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.10、D【分析】根据题意,第二月获得利润万元,第三月获得利润万元,根据第一季度共获利145.6万元,即可得出关于的一元二次方程,此题得解.【题目详解】设二、三月份利润的月增长率为,则第二月获得利润万元,第三月获得利润万元,

依题意,得:.

故选:D.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.求平均变化率的方法为:若变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.二、填空题(每小题3分,共24分)11、【分析】根据相似三角形的判定得到△ABC∽△CBD,从而可根据其相似比求得AC的长.【题目详解】∵,,,∴∠BDC=∠BCA=90°,∠CBD+∠ABC=90°,BC=3,∴△ABC∽△CBD,

∴AC:CD=CB:BD,即AC:=3:2,∴AC=.

故答案为:.【题目点拨】本题考查相似三角形的判定和性质、勾股定理.12、【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【题目详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案为:.【题目点拨】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.13、4【解题分析】用含x的代数式表示y,计算x+y并进行配方即可.【题目详解】∵∴∴∴当x=-1时,x+y有最大值为4故答案为4【题目点拨】本题考查的是求代数式的最大值,解题的关键是配方法的应用.14、【分析】根据题意可以求出各个扇形圆心角的度数,然后利用扇形面积和三角形的面积公式即可求出阴影部分的面积.【题目详解】解:∵是⊙的切线,,∴,∵点把弧分成三等分,,,,.故答案为:.【题目点拨】本题主要考查扇形的面积公式和等腰直角三角形的性质,掌握扇形的面积公式是解题的关键.15、【分析】由题意可知已知数的每一项,都等于它的序列号的平方减,进而进行分析即可求解.【题目详解】解:给出的数:,,,,,……序列号:,,,,,……容易发现,已知数的每一项,都等于它的序列号的平方减.因此,第个数是,第个数是.故第个数是,第个数是.故答案为:,.【题目点拨】本题考查探索规律的问题,解决此类问题要从数字中间找出一般规律(符号或数),进一步去运用规律进行解答.16、>【分析】用放缩法比较即可.【题目详解】∵,∴>3+1=4.故答案为:>.【题目点拨】此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.在应用“夹逼法”估算无理数时,关键是找出位于无理数两边的平方数,则无理数的整数部分即为较小的平方数的算术平方根.17、【分析】设反比例函数的解析式为y=(k≠0),把A点坐标代入可求出k值,即可得答案.【题目详解】设反比例函数的解析式为y=(k≠0),∵反比例函数的图像过点,∴3=,解得:k=-6,∴这个反比例函数的表达式为,故答案为:【题目点拨】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.18、【分析】设则,根据是平行四边形,可得,即,和,可得,由于是的中点,可得,因此,,,再通过便可得出.【题目详解】解:∵∴设,,则∵是平行四边形∴,∴,,∴∴又∵是的中点∴∴∴∴∴故答案为:【题目点拨】本题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,求证两个三角形相似,再通过比值等量代换表示出边的数量关系是解题的关键.三、解答题(共66分)19、(1)如图所示,见解析;(2)①增大;②上,1;③;(3)1.【分析】(1)按要求把轴左边点和右边各点分别用一条光滑曲线顺次连接起来即可;(2)①观察图像可得出函数增减性;②由表格数据及图像可得出平移方式;③由图像可知对称中心;(3)将与联立求解,得到A、B两点坐标,将△AOB分为△AOC与△BOC计算面积即可.【题目详解】(1)如图所示:(2)①由图像可知:当时,随的增大而增大,故答案为增大;②由表格数据及图像可知,的图象是由的图象向上平移1个单位而得到的,故答案为上,1;③由图像可知图像关于点(0,1)中心对称.(3),解得:或∴A点坐标为(-1,3),B点坐标为(1,-1)设直线与y轴交于点C,当x=0时,y=1,所以C点坐标为(0,1),如图所示,S△AOB=S△AOC+S△BOC===所以△AOB的面积为1.【题目点拨】本题考查反比例函数的图像与性质,描点作函数图像,掌握反比例函数的图像与性质是关键.20、(1)见解析(2)8m【题目详解】试题分析:(1)利用太阳光线为平行光线作图:连结CE,过A点作AF∥CE交BD于F,则BF为所求;(2)证明△ABF∽△CDE,然后利用相似比计算AB的长.试题解析:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴,即,∴AB=8(m),答:旗杆AB的高为8m.21、(1)证明见解析;(1)CD=1.【解题分析】分析:(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(1)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.详(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(1)∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴.∵BD=AD,∴,∴,又∵AC=3,∴CD=1.点睛:本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(1)利用相似三角形的性质找出.22、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为.【分析】(1)过点作轴于根据已知条件可得出AD=6,再直角三角形ADG中可求出DG,AG的长,即可确定点D的坐标.(2)过点作轴于于可得出,根据勾股定理得出AE的长为10,再利用面积公式求出DH,从而求出OG,DG的长,得出答案(3)连接,作轴于G,由旋转性质得到,从而可证,继而可得出结论.【题目详解】解:(1)过点作轴于,如图①所示:点,点.,以点为中心,顺时针旋转矩形,得到矩形,,在中,,,点的坐标为;(2)过点作轴于于,如图②所示:则,,,,,,,点的坐标为;(3)连接,作轴于G,如图③所示:由旋转的性质得:,,,,,,在和中,,,,,点的坐标为.【题目点拨】本题考查的知识点是坐标系内矩形的旋转问题,用到的知识点有勾股定理,全等三角形的判定与性质等,做此类题目时往往需要利用数形结合的方法来求解,根据每一个问题做出不同的辅助线是解题的关键.23、(1)见解析;(2)【分析】(1)根据题意列表,然后写出点(m,n)所有可能的结果即可;(2)点(m,n)所有可能的结果共有9种,符合n=m的有3种,由概率公式即可得出答案.【题目详解】解:(1)列表如下:点(m,n)所有可能的结果为:(﹣2,﹣2),(﹣1,﹣2),(3,﹣2),(﹣2,﹣1),(﹣1,﹣1),(3,﹣1),(﹣2,3),(﹣1,3)(3,3);(2)点(m,n)所有可能的结果共有9种,符合n=m的有3种:(﹣2,﹣2),(﹣1,﹣1),(3,3),∴点(m,n)在函数y=x的图象上的概率为:.【题目点拨】本题考查了列表法与树状图法、概率公式以及一次函数的性质等知识;列表得出所有结果是解题的关键.24、(1);;(2)成立,理由见解析【分析】(1)①依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据“SAS”可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到∠ABD=∠ACE;②由三角形内角和定理可求∠BPC的度数;(2)由30°角的性质可知,,从而可得,进而可证,由相似三角形的性质和三角形内角和即可得出结论;【题目详解】(1)①∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∠ABC=∠ACB=45°,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,②∵∠BPC=180°-∠ABD-∠ABC-∠BCP=180°-45°-(∠BCP+∠ACE),∴∠BPC=90°,故答案为:;(2)(1)中结论成立,理由:在中,,∴.在中,,∴,∴,∵,∴,∴.∴;∵∴.【题目点拨】本题是三角形综合题,主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、含30°角的直角三角形的性质,以及相似三角形的性质和判定,证明得是解题的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论