2024届合肥市45中九年级数学第一学期期末综合测试试题含解析_第1页
2024届合肥市45中九年级数学第一学期期末综合测试试题含解析_第2页
2024届合肥市45中九年级数学第一学期期末综合测试试题含解析_第3页
2024届合肥市45中九年级数学第一学期期末综合测试试题含解析_第4页
2024届合肥市45中九年级数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届合肥市45中九年级数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一元二次方程的解是()A.5或0 B.或0 C. D.02.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为3.根据下表中的二次函数y=ax2+bx+c的自变量x与函数yx

-1

0

1

2

y

-1

-7-2

-7…A.只有一个交点 B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧 D.无交点4.若函数其几对对应值如下表,则方程(,,为常数)根的个数为()A.0 B.1 C.2 D.1或25.如图,点是内一点,,,点、、、分别是、、、的中点,则四边形的周长是()A.24 B.21 C.18 D.146.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.117.如图,一段抛物线,记为抛物线,它与轴交于点;将抛物线绕点旋转得抛物线,交轴于点;将抛物线绕点旋转得抛物线,交轴于点.···如此进行下去,得到一条“波浪线”,若点在此“波浪线”上,则的值为()A. B. C. D.8.下列二次根式中,不是最简二次根式的是()A. B. C. D.9.已知是关于的反比例函数,则()A. B. C. D.为一切实数10.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5 B.10 C.20 D.40二、填空题(每小题3分,共24分)11.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.12.如图,点G是△ABC的重心,过点G作GE//BC,交AC于点E,连结GC.若△ABC的面积为1,则△GEC的面积为____________.13.如图,已知⊙O上三点A,B,C,半径OC=,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为____.14.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.15.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.16.2018年10月21日,河间市诗经国际马拉松比赛拉开帷幕,电视台动用无人机航拍技术全程录像.如图,是无人机观测AB两选手在某水平公路奔跑的情况,观测选手A处的俯角为,选手B处的俯角为45º.如果此时无人机镜头C处的高度CD=20米,则AB两选手的距离是_______米.17.在一次夏令营中,小亮从位于点的营地出发,沿北偏东60°方向走了到达地,然后再沿北偏西30°方向走了若干千米到达地,测得地在地南偏西30°方向,则、两地的距离为_________.18.已知a+b=0目a≠0,则=_____.三、解答题(共66分)19.(10分)如图,△ABC.(1)尺规作图:①作出底边的中线AD;②在AB上取点E,使BE=BD;(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.20.(6分)一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.21.(6分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,求抛物线的函数表达式;若点是直线下方的抛物线上的动点,求的面积的最大值;若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.22.(8分)请画出下面几何体的三视图23.(8分)如图是测量河宽的示意图,与相交于点,,测得,,,求得河宽.24.(8分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为,种草所需费用(元)与的函数关系式为,其大致图象如图所示.栽花所需费用(元)与的函数关系式为.(1)求出,的值;(2)若种花面积不小于时的绿化总费用为(元),写出与的函数关系式,并求出绿化总费用的最大值.25.(10分)为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题.(1)在这次问卷调查中,共抽查了_________名同学;(2)补全条形统计图;(3)估计该校名同学中喜爱足球活动的人数;(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.26.(10分)如图,一次函数y=kx+b(b=0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n)(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)若kx+b<,直接写出x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据因式分解法即可求出答案.【题目详解】∵5x2=x,∴x(5x﹣1)=0,∴x=0或x.故选:B.【题目点拨】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2、D【解题分析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.3、B【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【题目详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【题目点拨】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.4、C【分析】先根据表格得出二次函数的图象与x轴的交点个数,再根据二次函数与一元二次方程的关系即可得出答案.【题目详解】由表格可得,二次函数的图象与x轴有2个交点则其对应的一元二次方程根的个数为2故选:C.【题目点拨】本题考查了二次函数的图象、二次函数与一元二次方程的关系,掌握理解二次函数的图象特点是解题关键.5、B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,求出,然后代入数据进行计算即可得解.【题目详解】∵E、F、G、H分别是AB、AC、CD、BD的中点,

∴,∴四边形EFGH的周长,

又∵AD=11,BC=10,

∴四边形EFGH的周长=11+10=1.

故选:B.【题目点拨】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.6、D【分析】计算最大数19与最小数8的差即可.【题目详解】19-8=11,故选:D.【题目点拨】此题考查极差,即一组数据中最大值与最小值的差.7、D【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.【题目详解】∵一段抛物线:,∴图象与x轴交点坐标为:(0,0),(6,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得Cn.∴Cn的与x轴的交点横坐标为(6n,0),(6n+3,0),∴在C337,且图象在x轴上方,∴C337的解析式为:,当时,.即,故答案为D.【题目点拨】此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.8、C【解题分析】根据最简二次根式的定义对各选项分析判断即可.【题目详解】解:A、是最简二次根式,不合题意,故本选项错误;B、是最简二次根式,不合题意,故本选项错误;C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;D、是最简二次根式,不合题意,故本选项错误;故选C.【题目点拨】本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.9、B【分析】根据题意得,,即可解得m的值.【题目详解】∵是关于的反比例函数∴解得故答案为:B.【题目点拨】本题考查了反比例函数的性质以及定义,掌握反比例函数的指数等于是解题的关键.10、B【分析】利用圆锥面积=计算.【题目详解】=,故选:B.【题目点拨】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.二、填空题(每小题3分,共24分)11、【解题分析】设AB=a,AD=b,则ab=32,构建方程组求出a、b值即可解决问题.【题目详解】设AB=a,AD=b,则ab=32,由∽可得:,∴,∴,∴,,设PA交BD于O,在中,,∴,∴,故答案为.【题目点拨】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.12、【分析】如图,延长AG交BC于D,利用相似三角形的面积比等于相似比的平方解决问题即可.【题目详解】解:连接AG并延长交BC于点D,∴D为BC中点∴又∵∴∵G为重心∴∴∴,又∵∴.【题目点拨】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、1【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【题目详解】连接OA,∵∠ABC=10°,∴∠AOC=2∠ABC=60°,∵切线PA交OC延长线于点P,∴∠OAP=90°,∵OA=OC=,∴AP=OAtan60°=×=1.故答案为:1.【题目点拨】本题考查了圆的切线问题,掌握圆周角定理、圆的切线性质是解题的关键.14、2或或.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=1﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FGBF,由射影定理求出BG,再解方程即可.【题目详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.设AE=x,则EF=x,BF=1﹣2x.分三种情况讨论:①当BF=BC时,1﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FGBF.根据射影定理得:BC2=BG•AB,∴BG,即(1﹣2x),解得:x,∴AE;综上所述:当△BCF为等腰三角形时,AE的长为:2或或.故答案为:2或或.【题目点拨】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.15、a≤且a≠1.【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【题目详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.16、【分析】在两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可;【题目详解】由已知可得,,CD=20,∵于点D,∴在中,,,∴,在中,,,∴,∴.故答案为.【题目点拨】本题主要考查了解直角三角形的应用,准确理解和计算是解题的关键.17、【分析】由已知可得到△ABC是直角三角形,从而根据三角函数即可求得AC的长.【题目详解】解:如图.由题意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.

∵EF//PQ,

∴∠1=∠EAB=60°

又∵∠2=30°,

∴∠ABC=180°−∠1−∠2=180°−60°−30°=90°,

∴△ABC是直角三角形.

又∵MN//PQ,

∴∠4=∠2=30°.

∴∠ACB=∠4+∠3=30°+30°=60°.

∴AC===(km),

故答案为.【题目点拨】本题考查了解直角三角形的相关知识,解答此类题目的关键是根据题意画出图形利用解直角三角形的相关知识解答.18、1【分析】先将分式变形,然后将代入即可.【题目详解】解:,故答案为1【题目点拨】本题考查了分式,熟练将式子进行变形是解题的关键.三、解答题(共66分)19、(1)①详见解析;②详见解析;(2)15°.【分析】(1)①作线段BC的垂直平分线可得BC的中点D,连接AD即可;②以B为圆心,BD为半径画弧交AB于E,点E即为所求.(2)根据题意利用等腰三角形的性质,三角形的内角和定理求解即可.【题目详解】解:(1)如图,线段AD,点E即为所求.(2)如图,连接DE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BD=BE,∴∠BDE=∠BED=(180°﹣30°)=75°,∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADB=90°,∴∠ADE=90°﹣∠ADE=90°﹣75°=15°.【题目点拨】本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握相关的基本知识.20、(1);(2)组成的两位数是奇数的概率为.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有20种等可能的结果数,找出组成的两位数是奇数的结果数,然后根据概率公式计算.【题目详解】解:(1)从袋中任意摸出一个球,摸到标号为偶数的概率;故答案为:;(2)画树状图为:共有20种等可能的结果数,其中组成的两位数是奇数的结果数为12,所以组成的两位数是奇数的概率.【题目点拨】本题主要考查了列表法与树状图法求概率,利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.21、(1)y=x2+x﹣2;(2)△PBC面积的最大值为2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,点M(﹣1,﹣),△AMC周长的最小值为.【分析】(1)先由抛物线的对称性确定点B坐标,再利用待定系数法求解即可;(2)先利用待定系数法求得直线BC的解析式,然后设出点P的横坐标为t,则可用含t的代数式表示出PE的长,根据面积的和差可得关于t的二次函数,再根据二次函数的性质可得答案;(3)先设D(m,0),然后用m的代数式表示出E点和P点坐标,由条件可得关于m的方程,解出m的值即可得解;(4)要使周长最小,由于AC是定值,所以只要使MA+MC的值最小即可,由于点B是点A关于抛物线对称轴的对称点,则点M就是BC与抛物线对称轴的交点,由于点M的横坐标已知,则其纵坐标易得,再根据勾股定理求出AC+BC,即为周长的最小值.【题目详解】解:(1)∵对称轴为x=﹣1的抛物线与x轴交于A(2,0),B两点,∴B(﹣4,0).设抛物线解析式是:y=a(x+4)(x﹣2),把C(0,﹣2)代入,得:a(0+4)(0﹣2)=﹣2,解得a=,所以该抛物线解析式是:y=(x+4)(x﹣2)=x2+x﹣2;(2)设直线BC的解析式为:y=mx+n,把B(﹣4,0),C(0,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x﹣2,作PQ∥y轴交BC于Q,如图1,设P(t,t2+t﹣2),则Q(t,﹣t﹣2),∴PQ=﹣t﹣2﹣(t2+t﹣2)=﹣t2﹣t,∴S△PBC=S△PBQ+S△PCQ=•PQ•4=﹣t2﹣2t=﹣(t+2)2+2,∴当t=﹣2时,△PBC面积有最大值,最大值为2;(3)设D(m,0),∵DP∥y轴,∴E(m,﹣m﹣2),P(m,m2+m﹣2),∵PE=OD,∴,∴m2+3m=0或m2+5m=0,解得:m=﹣3,m=0(舍去)或m=﹣5,m=0(舍去),∴P(﹣3,﹣)或P(﹣5,);(4)∵点A、B关于抛物线的对称轴对称,∴当点M为直线BC与对称轴的交点时,MA+MC的值最小,如图2,此时△AMC的周长最小.∵直线BC的解析式为y=﹣x﹣2,抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,y=﹣.∴抛物线对称轴上存在点M(﹣1,﹣)符合题意,此时△AMC周长的最小值为AC+BC=.【题目点拨】此题是二次函数综合题,主要考查了利用待定系数法确定函数解析式、二次函数的性质、一元二次方程的解法、二次函数图象上的坐标特征和两线段之和最小等知识,属于常考题型,解题的关键是熟练掌握二次函数的性质和函数图象上点的坐标特征.22、详见解析.【分析】根据几何体分别画出从正面,上面和左面看到的图形即可.【题目详解】如图所示:主视图左视图俯视图【题目点拨】本题主要考查几何体的三视图,掌握三视图的画法是解题的关键.23、河宽的长为【分析】先证明,利用对应边成比例代入求值即可.【题目详解】在和中,,即河宽的长为.【题目点拨】本题考查相似三角形的性质与判定,关键在于熟悉基础知识.24、(1),;(2),绿化总费用的最大值为32500元.【分析】(1)将x=600、y=18000代入y1=k1x可得k1;将x=1000、y=26000代入y1=k2x+6000可得k2;(2)根据种花面积不小于,则种草面积小于等于,根据总费用=种草的费用+种花的费用列出二次函数解析式,然后依据二次函数的性质可得.【题目详解】解:(1)由图象可知,点在上,代入得:,解得,由图象可知,点在上,解得;(2)∵种花面积不小于,∴种草面积小于等于,由题意可得:,∴当时,有最大值为32500元.答:绿化总费用的最大值为32500元..【题目点拨】本题考查了一次函数的应用,以及二次函数的应用,掌握待定系数法求函数解析式及二次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论