




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南长沙市一中学集团数学九年级第一学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值(其中m>0>n),下列结论正确的()x…0124…y…mkmn…A.abc>0 B.b2﹣4ac<0 C.4a﹣2b+c<0 D.a+b+c<02.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C. D.3.如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A.一直不变 B.一直变大C.先变小再变大 D.先变大再变小4.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程()A. B.C. D.5.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x-4)2=17 D.(x-4)2=156.为解决群众看病贵的问题,有关部门决定降低药价,原价为30元的药品经过连续两次降价,价格变为24.3元,则平均每次降价的百分率为()A.10% B.15% C.20% D.25%7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.如图,内接于⊙,,,则⊙半径为()A.4 B.6 C.8 D.129.若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣110.关于反比例函数,下列说法正确的是()A.图象过(1,2)点 B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大二、填空题(每小题3分,共24分)11.某人沿着有一定坡度的坡面前进了6米,此时他在垂直方向的距离上升了2米,则这个坡面的坡度为_____.12.对于实数,定义运算“◎”如下:◎.若◎,则_____.13.已知是关于的方程的一个根,则______.14.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.15.如图,的直径AB与弦CD相交于点,则______.16.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.17.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于点A和点B,若C为x轴上任意一点,连接AC,BC,则的面积是________.18.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.三、解答题(共66分)19.(10分)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36º的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.(1)如图2,请用两种不同的方法画出顶角为45º的等腰三角形的三分线,并标注每个等腰三角形顶角的度数:(若两种方法分得的三角形成3对全等三角形,则视为同一种).(2)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.20.(6分)如图,AB是的直径,点C,D在上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.(1)求证:EF与相切:(2)若AB=3,BD=,求CE的长.21.(6分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.22.(8分)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?23.(8分)已知,关于的方程的两个实数根.(1)若时,求的值;(2)若等腰的一边长,另两边长为、,求的周长.24.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为(元),请你分别用含的代数式来表示销售量(件)和销售该品牌玩具获得利润(元),并把结果填写在表格中:销售单价(元)销售量(件)销售玩具获得利润(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?25.(10分)如图,在中,,,,点在上,,以为半径的交于点,的垂直平分线交于点,交于点,连接.(1)求证:直线是的切线;(2)求线段的长.26.(10分)在如图网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=1.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2、B2、C2的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】用二次函数的图象与性质进行解答即可.【题目详解】解:如图:由抛物线的对称性可知:(0,m)与(2,m)是对称点,故对称轴为x=1,∴(﹣2,n)与(4,n)是对称点,∴4a﹣2b+c=n<0,故选:C.【题目点拨】本题考查二次函数图像的性质,熟练运用二次函数的图像与性质是解答本题的关键.2、D【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【题目详解】解:由题意得∠DAE=∠CAB,A、当∠AED=∠B时,△ABC∽△AED,故本选项不符合题意;B、当∠ADE=∠C时,△ABC∽△AED,故本选项不符合题意;C、当=时,△ABC∽△AED,故本选项不符合题意;D、当=时,不能推断△ABC∽△AED,故本选项符合题意;故选D.【题目点拨】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.3、D【解题分析】如图,连接OP,PF,作PH⊥AB于H.点P的运动轨迹是以O为圆心、OP为半径的⊙O,易知EF=2FH=2,观察图形可知PH的值由大变小再变大,推出EF的值由小变大再变小.【题目详解】如图,连接OP,PF,作PH⊥AB于H.∵CD=8,∠COD=90°,∴OP=CD=4,∴点P的运动轨迹是以O为圆心OP为半径的⊙O,∵PH⊥EF,∴EH=FH,∴EF=2FH=2,观察图形可知PH的值由大变小再变大,∴EF的值由小变大再变小,故选:D.【题目点拨】此题主要考查圆与几何综合,解题的关键是熟知勾股定理及直角坐标系的特点.4、B【分析】根据题意,门框的长、宽以及竹竿长是直角三角形的三边长,等量关系为:门框长的平方+门框宽的平方=门的对角线长的平方,把相关数值代入即可求解.【题目详解】解:∵竹竿的长为x尺,横着比门框宽4尺,竖着比门框高2尺.
∴门框的长为(x-2)尺,宽为(x-4)尺,
∴可列方程为(x-4)2+(x-2)2=x2,
故选:B.【题目点拨】本题考查了由实际问题抽象出一元二次方程,得到门框的长,宽,竹竿长是直角三角形的三边长是解决问题的关键.5、C【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【题目详解】解:∵,∴,即,故选:C.【题目点拨】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.6、A【分析】设平均每次降价的百分率为x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】设平均每次降价的百分率为x,依题意,得:30(1﹣x)2=24.3,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故选:A.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7、A【解题分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、C【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【题目详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=1,∴△OBC是等边三角形,∴OB=BC=1.故选:C.【题目点拨】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.9、C【分析】根据根的判别式()即可求出答案.【题目详解】由题意可知:∴∵∴且,故选:C.【题目点拨】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k的取值范围.10、D【解题分析】试题分析:根据反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大.可由k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选D.考点:反比例函数图象的性质二、填空题(每小题3分,共24分)11、【分析】先利用勾股定理求出AC的长,再根据坡度的定义即可得.【题目详解】由题意得:米,米,,在中,(米),则这个坡面的坡度为,故答案为:.【题目点拨】本题考查了勾股定理、坡度的定义,掌握理解坡度的定义是解题关键.12、-3或4【分析】利用新定义得到,整理得到,然后利用因式分解法解方程.【题目详解】根据题意得,,,,或,所以.故答案为或.【题目点拨】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13、9【分析】根据一元二次方程根的定义得,整体代入计算即可.【题目详解】∵是关于的方程的一个根,∴,即,∴故答案为:.【题目点拨】考查了一元二次方程的解的定义以及整体思想的运用.14、y=x1+1【解题分析】分析:先确定二次函数y=x1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x1+1.故答案为y=x1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15、【解题分析】分析:由已知条件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB是的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=,∴tan∠ABC=,又∵∠ADC=∠ABC,∴tan∠ADC=.故答案为:.点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.16、.【题目详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.17、1【分析】连接OA、OB,如图,由于AB∥x轴,根据反比例函数k的几何意义得到S△OAP=2,S△OBP=1,则S△OAB=1,然后利用AB∥OC,根据三角形面积公式即可得到S△CAB=S△OAB=1.【题目详解】连接OA,OB,如图轴,,,∴,,∴.故答案为:1.【题目点拨】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.18、3.【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【题目详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.【题目点拨】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.三、解答题(共66分)19、(1)图见解析,;(2)三分线长分别是和【分析】(1)根据等腰三角形的判定定理容易画出图形;由等腰三角形的性质即可求出各个顶角的度数;(2)根据等腰三角形的判定定力容易画出图形,设,则,,则,得出对应边成比例,设,得出方程组,解方程即可得.【题目详解】解:(1)作图如图1、图2所示:在图1中,即三个等腰三角形的顶角分别为在图2中,,,即三个等腰三角形的顶角分别为(2)如图3所示,就是所求的三分线设,则,此时,设,∵,∴∵,∴,解方程组解得:,或(负值舍去),即三分线长分别是和【题目点拨】本题是相似形的综合性题目,考查了等腰三角形的判定和性质、等腰三角形的画图、相似三角形的判定和性质、解方程组等知识,本题考查学生学习的理解能力及动手创新能力,综合性较强,有一定难度.20、(1)证明见解析;(2).【分析】(1)连接OD,由角平分线和等边对等角,得到,则,即可得到结论成立;(2)连接,,,由勾股定理求出AD,然后证明,求出DE的长度,然后即可求出CE的长度.【题目详解】(1)证明,如图,连接.平分,.∵,....∵,..即.与相切.(2)如图,连接,,.是的直径,.在中,.∵,,.,即..∵,,,..在中,.【题目点拨】本题考查了相似三角形的性质和判定,勾股定理,切线的判定,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,两小题题型都很好,都具有一定的代表性.21、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【题目详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.【题目点拨】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.22、(1);(2)安全.【分析】(1)如图(见解析),先根据方位角的定义可得,再根据平行线的判定与性质可得,然后根据角的和差即可得;(2)设海里,分别在和中,解直角三角形建立等式,求出x的值,由此即可得出答案.【题目详解】(1)如图,过点P作于点C,由题意得:海里,,,;(2)由垂线段最短可知,若海里,则舰队继续向正东方向航行是安全的,设海里,在中,,即,解得,在中,,即,解得,,,解得,即海里,,舰队继续向正东方向航行是安全的.【题目点拨】本题考查了方位角、平行线的判定与性质、解直角三角形等知识点,较难的是题(2),将问题正确转化为求PC的长是解题关键.23、(1)30;(2)1【分析】(1)若k=3时,方程为x2-1x+6=0,方法一:先求出一元二次方程的两根a,b,再将a,b代入因式分解后的式子计算即可;方法二:利用根与系数的关系得到a+b=1,ab=6,再将因式分解,然后利用整体代入的方法计算;(2)分1为底边和1为腰两种情况讨论即可确定等腰三角形的周长.【题目详解】解:(1)将代入原方程,得:.方法一:解上述方程得:因式分解,得:.代入方程的解,得:.方法二:应用一元二次方程根与系数的关系因式分解,得:,由根与系数的关系,得,则有:.(2)①当与其中一个相等时,不妨设,将代回原方程,得.解得:,此时,不满足三角形三边关系,不成立;②当时,,解得:,解得:,.综上所述:△ABC的周长为1.【题目点拨】本题考查了根的判别式,根与系数的关系,三角形的三边关系,等腰三角形的定义,解题的关键是熟知两根之和、两根之积与系数的关系.24、(1)1000-10x,-10x2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元.【分析】(1)根据销售单价每涨1元,就会少售出10件玩具,再列出销售量y(件)和销售玩具获得利润(元)的代数式即可;(2)令(1)所得销售玩具获得利润(元)的代数式等于10000,然后求得x即可;(3)、先求出x的取值范围,然后根据(1)所得销售玩具获得利润(元)的代数式结合x的取值范围,运用二次函数求最值的方法求出最大利润即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025上海二手车买卖合同样本
- 套细胞淋巴瘤的临床护理
- 2025年企业设备借款抵押合同专业版范本
- 2025年人教版小学数学一年级下册期末考试卷(带答案)
- 白头粉刺的临床护理
- 缩鼻翼的临床护理
- 新质生产力绿色转型
- 浙江国企招聘2025浙江省安全生产科学研究有限公司招聘19人笔试参考题库附带答案详解
- 2025【合同范本】简易劳务合作协议模板
- 《2025项目工程物资采购合同》
- 国家卫生部《综合医院分级管理标准》
- DB64++1996-2024+燃煤电厂大气污染物排放标准
- 初中八年级数学课件-最短路径-将军饮马问题
- 信息论与编码期末考试题(全套)
- 医院医学伦理审查委员会章程
- 废弃物管理制度范本
- 房地产销售价格优惠申请表-
- 绿化自动滴灌系统施工方案
- 处理突发事件流程图
- 2023年梅毒诊疗指南
- 医疗卫生系统招聘《医学基础知识》备考题库资料宝典(核心题版)
评论
0/150
提交评论