版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省峨山县大龙潭中学九年级数学第一学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.某商场对上周女装的销售情况进行了统计,如下表,经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()颜色黄色绿色白色紫色红色数量(件)10018022080520A.平均数 B.中位数 C.众数 D.方差2.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×53.△ABC在正方形网格中的位置如图所示,则cosB的值为()A. B. C. D.24.下列一元二次方程中有两个不相等的实数根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=05.如图,在平行四边形中,点是上任意一点,过点作交于点,连接并延长交的延长线于点,则下列结论中错误的是()A. B. C. D.6.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点C是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为()A. B. C. D.7.对于二次函数y=﹣(x﹣2)2﹣3,下列说法正确的是()A.当x>2时,y随x的增大而增大 B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣3) D.图象与x轴有两个交点8.关于的一元二次方程有一个根为,则的值应为()A. B. C.或 D.9.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A. B. C.3 D.210.用配方法解方程,经过配方,得到()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.12.中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为_____.(用百分数表示)13.某扇形的弧长为πcm,面积为3πcm2,则该扇形的半径为_____cm14.某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为,则可列出的方程是__________________________________.15.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=_____.16.如图,ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径,且AE=4,若CD=1,AD=3,则AB的长为______.17.圆锥侧面展开图的圆心角的度数为,母线长为5,该圆锥的底面半径为________.18.如图,直线l1∥l2,直线l3与l1、l2分别交于点A、B.若∠1=69°,则∠2的度数为_____.三、解答题(共66分)19.(10分)如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.(1)求二次函数y=ax2+bx+c的表达式;(2)若∠APO=90°,求点A的坐标;(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:①当m≠4时,试判断四边形OBCD的形状并说明理由;②当n<0时,若四边形OBCD的面积为12,求点A的坐标.20.(6分)如图,∆ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交圆⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.(1)求证:∆ABM∽∆ECA.(2)当CM=4OM时,求BM的长.(3)当CM=kOM时,设∆ADE的面积为,∆MCD的面积为,求的值(用含k的代数式表示).21.(6分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.22.(8分)如图,在中,点在边上,,分别过点,作,的平行线,并交于点,且的延长线交于点,.(1)求证:.(2)求证:四边形为菱形.(3)若,,求四边形的面积.23.(8分)已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.24.(8分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.25.(10分)计算:|2﹣|+()﹣1+﹣2cos45°26.(10分)课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)在下边的图形中,画出所有符合题意的图形;(2)求BF的长.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【题目详解】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.
故选:C.【题目点拨】反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、D【分析】根据关键语句“矩形衬纸的面积为照片面积的3倍”列出方程求解即可.【题目详解】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=3×7×5,
故选:D【题目点拨】找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.3、A【解题分析】解:在直角△ABD中,BD=2,AD=4,则AB=,则cosB=.故选A.4、C【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【题目详解】解:选项A:△=0,方程有两个相等的实数根;选项B、△=0-12=-12<0,方程没有实数根;选项C、△=4-4×1×(-17)=4+68=72>0,方程有两个不相等的实数根;选项D、△=1-4×5=-19<0,方程没有实数根.故选:C.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac;当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5、C【分析】根据平行四边形的性质可得出AD=EF=BC、AE=DF、BE=CF,然后根据相似三角形的对应边成比例一一判断即可.【题目详解】∵四边形ABCD为平行四边形,EF∥BC,∴AD=EF=BC,AE=DF,BE=CF.A.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论A正确;B.∵AD∥CK,∴△ADF∽△KCF,∴,∴,故结论B正确;C.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论C错误;D.∵ABCD是平行四边形,∴∠B=∠D.∵AD∥BK,∴∠DAF=∠K,∴△ADF∽△KBA,∴,即,故结论D正确.故选:C.【题目点拨】本题考查了相似三角形的判定与性以及平行四边形的性质,根据相似三角形的性质逐一分析四个结论的正误是解题的关键.6、A【解题分析】先确定点B、A、C的坐标,①当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线OD过点G时,利用相似求出点F的坐标,根据圆心在弦的垂直平分线上确定圆心在线段BC的垂直平分线上,故纵坐标为,利用两点间的距离公式求得圆心的坐标,由此可求圆心所走的路径的长度.【题目详解】∵直线与x轴交于点A,与y轴交于点B,∴B(0,4),A(4,0),∵点C是AB的中点,∴C(2,2),①当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线OD过点G时,如图,连接CN,OC,则CN=ON=2,∴OC=,∵G(-2,0),∴直线GC的解析式为:,∴直线GC与y轴交点M(0,1),过点M作MH⊥OC,∵∠MOH=45,∴MH=OH=,∴CH=OC-OH=,∵∠NCO=∠FCG=45,∴∠FCN=∠MCH,又∵∠FNC=∠MHC,∴△FNC∽△MHC,∴,即,得FN=,∴F(,0),此时过点F、B、C三点的圆心在BF的垂直平分线上,设圆心坐标为(x,),则,解得,当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径为线段,即由BC的中点到点(,),∴所经过的路径长=.故选:A.【题目点拨】此题是一道综合题,考查一次函数的性质,待定系数法求函数的解析式,相似三角形的判定及性质定理,两点间的距离公式,综合性比较强,做题时需时时变换思想来解题.7、B【分析】根据二次函数的性质对进行判断;通过解方程﹣(x﹣2)2﹣3=0对D进行判断即可.【题目详解】∵二次函数y=﹣(x﹣2)2﹣3,∴当x>2时,y随x的增大而减小,故选项A错误;当x=2时,该函数取得最大值,最大值是﹣3,故选项B正确;图象的顶点坐标为(2,﹣3),故选项C错误;当y=0时,0=﹣(x﹣2)2﹣3,即,无解,故选项D错误;故选:B.【题目点拨】本题考查了二次函数的图象和性质,把求二次函数与轴的交点问题转化为解关于的一元二次方程问题可求得交点横坐标,牢记其的顶点坐标、对称轴及开口方向是解答本题的关键.8、B【分析】把x=0代入方程可得到关于m的方程,解方程可得m的值,根据一元二次方程的定义m-2≠0,即可得答案.【题目详解】关于的一元二次方程有一个根为,且,解得,.故选B.【题目点拨】本题考查一元二次方程的解及一元二次方程的定义,使等式两边成立的未知数的值叫做方程的解,明确一元二次方程的二次项系数不为0是解题关键.9、B【解题分析】如图所示:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=3√,OP=3,∴PA=故选B.点睛:本题考查了垂径定理、圆周角定理、勾股定理的应用.解答此题的关键是找出“PA⊥OA时,∠OPA最大”这一隐含条件.当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.10、D【分析】通过配方法的步骤计算即可;【题目详解】,,,,故答案选D.【题目点拨】本题主要考查了一元二次方程的配方法应用,准确计算是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积-三个小扇形的面积.【题目详解】解:阴影部分的面积为:1×1÷1---=1-.故答案为1-.【题目点拨】本题主要考查了扇形的面积计算,关键是理解阴影部分的面积=三角形的面积-三个小扇形的面积.12、40%【解题分析】设该地区居民年人均收入平均增长率为,根据到2018年人均年收入达到39200元列方程求解即可.【题目详解】设该地区居民年人均收入平均增长率为,,解得,,(舍去),∴该地区居民年人均收入平均增长率为,故答案为:.【题目点拨】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n
=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.13、1【分析】根据扇形的面积公式S=,可得出R的值.【题目详解】解:∵扇形的弧长为πcm,面积为3πcm2,扇形的面积公式S=,可得R=故答案为1.【题目点拨】本题考查了扇形面积的求法,掌握扇形面积公式是解答本题的关键.14、【分析】先列出第一次降价后售价的代数式,再根据第一次的售价列出第二次降价后售价的代数式,然后根据已知条件即可列出方程.【题目详解】依题意得:第一次降价后售价为:2370(1-x),
则第二次降价后的售价为:2370(1-x)(1-x)=2370(1-x)2,
故.
故答案为.【题目点拨】此题考查一元二次方程的运用,解题关键在于要注意题意指明的是降价,应该是1-x而不是1+x.15、1.【解题分析】试题分析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b.试题解析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a=4且b=-3,∴a+b=1.考点:关于原点对称的点的坐标.16、【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【题目详解】解:∵AD是△ABC的高,
∴∠ADC=90°,
∴,
∵AE是直径,
∴∠ABE=90°,
∴∠ABE=∠ADC,
∵∠E=∠C,
∴△ABE∽△ADC,
∴,
∴,
∴,
故答案为:.【题目点拨】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.17、1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解关于r的方程即可.【题目详解】设该圆锥的底面半径为r,根据题意得,解得.故答案为1.【题目点拨】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18、111°【分析】根据平行线的性质求出∠3=∠1=69°,即可求出答案.【题目详解】解:∵直线l1∥l2,∠1=69°,∴∠3=∠1=69°,∴∠2=180°﹣∠3=111°,故答案为111°.【题目点拨】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.三、解答题(共66分)19、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四边形,理由见解析;②A(1,﹣3)或A(3,﹣3).【分析】(1)由已知可得抛物线与x轴另一个交点(4,0),将(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表达式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四边形OBCD是平行四边形;②四边形由OBCD是平行四边形,,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).【题目详解】解:(1)∵图象经过原点,∴c=0,∵顶点为P(2,﹣4)∴抛物线与x轴另一个交点(4,0),将(2,﹣4)和(4,0)代入y=ax2+bx,∴a=1,b=﹣4,∴二次函数的解析式为y=x2﹣4x;(2)∵∠APO=90°,∴AP⊥PO,∵A(m,m2﹣4m),∴m﹣2=,∴m=,∴A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),∴CD∥OB,∵CD=4,OB=4,∴四边形OBCD是平行四边形;②∵四边形OBCD是平行四边形,,∴12=4×(﹣n),∴n=﹣3,∴A(1,﹣3)或A(3,﹣3).【题目点拨】本题考查了二次函数与几何综合问题,涉及二次函数求解析式、直角三角形、平行四边形等知识点,解题的关键是灵活运用上述知识点进行推导求解.20、(1)证明见解析;(2);(3)【分析】(1)利用同弧所对的圆周角相等,以及平行线的性质得出角相等,再利用两角对应相等的两个三角形相似解题.(2)连接BC构造直角三角形,再过B作BF⊥AC,利用所得到的直角三角形,结合勾股定理解题.(3)过点M作出△MCD的高MG,再由,得出线段间的比例关系,从而可得出结果.【题目详解】解:(1)∵弧CD=弧CD,∴.∵,∴.∴∵弧AD=弧AD∴∴(2)连接BC,作,∵半径为5,∴.∵,∴,.∴.由图可知AC为直径,,得.,解得.在中,,则.∴.在中,.(3)当,即,,,∵,∴,∴.过M作,,(以AC为直径),可知,∴.【题目点拨】此题是圆中的相似问题,一般利用两角相等证明相似,同时注意结合圆中作辅助线的技巧,构造直角三角形是解题的关键.21、(1)共调查了50名学生,补图见解析;(2).【分析】(1)设本次测试共调查了名学生,根据总体、个体、百分比之间的关系列出方程即可解决.用总数减去、、中的人数,即可解决,画出条形图即可.(2)画树状图展示所有12种等可能的结果数,再找出恰好抽到有1名女生的结果数,然后根据概率公式计算.【题目详解】解:(1)设本次测试共调查了名学生.由题意,解得:∴本次测试共调查了50名学生.则测试结果为等级的学生数=人.条形统计图如图所示,(2)画树状图:共有12种等可能的结果数,其中恰好抽到有1名女生的结果数6,所以恰好抽到有1名女生的概率==.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.也考查了统计图.解题的关键是灵活运用这些知识解决问题.22、(1)证明见解析;(2)证明见解析;(3)【分析】(1)由平行线的性质和公共角即可得出结论;(2)先证明四边形ABED是平行四边形,再证出AD=AB,即可得出四边形ABED为菱形;(3)连接AE交BD于O,由菱形的性质得出BD⊥AE,OB=OD,由相似三角形的性质得出AB=3DF=5,求出OB=3,由勾股定理求出OA=4,AE=8,由菱形面积公式即可得出结果.【题目详解】(1)证明:∵,∴;又∵,∴;(2)证明:∵,,∴四边形是平行四边形,∵,∴,∵,∴,∴,∵,∴,∴四边形为菱形;(3)解:连接交于,如图所示:∵四边形为菱形,∴,,∴,∵,∴,∴,∵,∴,,∴,由勾股定理得:∴,∴四边形的面积.【题目点拨】本题考查了相似三角形的判定与性质、菱形的判定和性质、平行四边形的判定、勾股定理、菱形的面积公式,熟练掌握相似三角形的判定与性质,证明四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 草图大师家具建模课程设计
- 茶馆设计汉代文化研究报告
- 茶园研学活动课程设计
- 2024年度车间设备安装承包合同
- 二零二四年度新能源项目合作合同
- 二零二四年度汽车回收拆解合同
- 2024年度版权许可使用合同标的为电子书内容
- 二零二四年度某公司金融服务合同
- 二零二四年度劳动合同标的员工岗位和薪酬福利
- 2024年度生产场地使用权与租赁合同
- 视觉传达专业大学生职业规划
- 企业环保改造升级方案
- Zippo-2022原版年册(哈雷戴森系列)
- 大学生职业生涯规划专业选择与个人发展
- 《血细胞及其功能》课件
- 220kV电缆直埋要求
- 计算机网络谢希仁第八版课后答案第七版课后答案
- 商务旅行合同
- 多元化和包容性的领导方式
- 数学学习的跨学科融合
- 铁路运输组织-铁路运输安全
评论
0/150
提交评论