版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛李沧、平度、西海岸、胶州2024届数学九上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为()A.121元 B.110元 C.120元 D.81元2.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或 B. C. D.或3.若一个圆锥的底面积为,圆锥的高为,则该圆锥的侧面展开图中圆心角的度数为()A. B. C. D.4.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°5.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是A. B. C. D.6.如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:87.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知点P(a+1,)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20° B.30° C.40° D.60°10.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.11.如图,在平面直角坐标系中,点、在函数的图象上,过点分别作轴、轴的垂线,垂足为、;过点分别作轴、轴的垂线,垂足为、.交于点,随着的增大,四边形的面积()A.增大 B.减小 C.先减小后增大 D.先增大后减小12.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.二、填空题(每题4分,共24分)13.△ABC中,∠C=90°,tanA=,则sinA+cosA=_____.14.如图,圆锥的底面半径r为4,沿着一条母线l剪开后所得扇形的圆心角ɵ=90°,则该圆锥的母线长是_________________.15.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.16.如图,用一张半径为10cm的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm,那么这张扇形纸板的弧长是________cm.17.二次函数的图象与y轴的交点坐标是__.18.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为___.三、解答题(共78分)19.(8分)国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?20.(8分)如图,点D,E分别在△ABC的AB,AC边上,且DE∥BC,AG⊥BC于点G,与DE交于点F.已知,BC=10,AF=1.FG=2,求DE的长.21.(8分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?22.(10分)如图,正方形FGHI各顶点分别在△ABC各边上,AD是△ABC的高,BC=10,AD=6.(1)证明:△AFI∽△ABC;(2)求正方形FGHI的边长.23.(10分)如图,直线y=﹣x+2与反比例函数y=的图象在第二象限内交于点A,过点A作AB⊥x轴于点B,OB=1.(1)求该反比例函数的表达式;(2)若点P是该反比例函数图象上一点,且△PAB的面积为3,求点P的坐标.24.(10分)已知:反比例函数和一次函数,且一次函数的图象经过点.(1)试求反比例函数的解析式;(2)若点在第一象限,且同时在上述两个函数的图象上,求点的坐标.25.(12分)(1)计算:(2)已知,求的值26.某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?
参考答案一、选择题(每题4分,共48分)1、A【分析】依次列出每次涨价后的价格即可得到答案.【题目详解】第一次涨价后的价格为:,第二次涨价后的价格为:121(元),故选:A.【题目点拨】此题考查代数式的列式计算,正确理解题意是解题的关键.2、D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【题目详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,
∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).
故选D.【题目点拨】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3、C【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【题目详解】解:∵圆锥的底面积为4πcm2,
∴圆锥的底面半径为2cm,
∴底面周长为4π,
圆锥的高为4cm,
∴由勾股定理得圆锥的母线长为6cm,
设侧面展开图的圆心角是n°,
根据题意得:=4π,
解得:n=1.
故选:C.【题目点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【题目详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【题目点拨】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.5、C【解题分析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,∵函数y=x﹣1的,,∴它的图象经过第一、三、四象限.根据反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限.∵反比例函数的系数,∴图象两个分支分别位于第一、三象限.综上所述,符合上述条件的选项是C.故选C.6、B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=1,OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【题目详解】过A作AF⊥OB于F,如图所示:∵A(1,1),B(6,0),∴AF=1,OF=1,OB=6,∴BF=1,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,∴∠OCE=∠DEB,∴△CEO∽△EDB,∴==,∵OE=,∴BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,则,,∴6b=10a﹣5ab①,24a=10b﹣5ab②,②﹣①得:24a﹣6b=10b﹣10a,∴,即AC:AD=2:1.故选:B.【题目点拨】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB是等边三角形是解题的关键.7、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【题目详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【题目点拨】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.8、C【解题分析】试题分析:∵P(,)关于原点对称的点在第四象限,∴P点在第二象限,∴,,解得:,则a的取值范围在数轴上表示正确的是.故选C.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.9、C【解题分析】试题分析:由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得:,然后由圆周角定理可得∠BOD=2∠CAB=2×20°=40°.故选C.考点:圆周角定理;垂径定理.10、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【题目详解】平移后的抛物线为故答案为A.【题目点拨】此题主要考查抛物线平移的性质,熟练掌握,即可解题.11、A【分析】首先利用a和b表示出AC和CQ的长,则四边形ACQE的面积即可利用a、b表示,然后根据函数的性质判断.【题目详解】解:AC=a−2,CQ=b,则S四边形ACQE=AC•CQ=(a−2)b=ab−2b.∵、在函数的图象上,∴ab=k=10(常数).∴S四边形ACQE=AC•CQ=10−2b,∵当a>2时,b随a的增大而减小,∴S四边形ACQE=10−2b随a的增大而增大.故选:A.【题目点拨】本题考查了反比例函数的性质以及矩形的面积的计算,利用b表示出四边形ACQE的面积是关键.12、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【题目详解】解:过点B作BC垂直OA于C,
∵点A的坐标是(2,0)
,AO=4,
∵△ABO是等边三角形∴OC=
2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【题目点拨】本题考查的是利用等边三角形的性质来确定反比例函数的k值.二、填空题(每题4分,共24分)13、【解题分析】∵在△ABC中,∠C=90°,,∴可设BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sinA=,cosA=,∴sinA+cosA=.故答案为.14、1【分析】由题意首先求得展开之后扇形的弧长也就是圆锥的底面周长,进一步利用弧长计算公式求得扇形的半径,即圆锥的母线l.【题目详解】解:扇形的弧长=4×2π=8π,可得=8π解得:l=1.故答案为:1.【题目点拨】本题考查圆锥的计算及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.15、8【解题分析】试题分析:设红球有x个,根据概率公式可得,解得:x=8.考点:概率.16、【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【题目详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【题目点拨】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.17、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【题目详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【题目点拨】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.18、1.【分析】根据概率公式得到,然后利用比例性质求出n即可.【题目详解】根据题意得,解得n=1,经检验:n=1是分式方程的解,故答案为:1.【题目点拨】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.三、解答题(共78分)19、30【分析】设该单位一共组织了x位职工参加旅游观光活动,求出当人数为20时的总费用及人均收费10元时的人数,即可得出20<x<1,再利用总费用=人数×人均收费,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】解:设该单位一共组织了x位职工参加旅游观光活动,∵500×20=10000(元),10000<12000,(500﹣10)=15(人),12000÷10=34(人),34不为整数,∴20<x<20+15,即20<x<1.依题意,得:x[500﹣10(x﹣20)]=12000,整理,得:x2﹣70x+1200=0,解得:x1=30,x2=40(不合题意,舍去).答:该单位一共组织了30位职工参加旅游观光活动.【题目点拨】本题考查了一元二次方程的应用,正确理解题意,找准题中等量关系列出方程是解题的关键.20、2【分析】根据DE∥BC得出△ADE∽△ABC,然后利用相似三角形的高之比等于相似比即可求出DE的长度.【题目详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AG⊥BC,∴AF⊥DE,∴=,∵BC=10,AF=1,FG=2,∴DE=10×=2.【题目点拨】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.21、(1)乙平均数为8,方差为0.8;(2)乙.【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【题目详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【题目点拨】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.22、(1)见解析;(2)正方形FGHI的边长是.【分析】(1)由正方形得出,从而得出两组对应相等的角,由相似三角形的判定定理即可得证;(2)由题(1)的结论和AD是的高可得,将各值代入求解即可.【题目详解】(1)四边形FGHI是正方形,即(两直线平行,同位角相等);(2)设正方形FGHI的边长为x由题(1)得的结论和AD是的高∴,解得故正方形FGHI的边长是.【题目点拨】本题考查了平行线的性质、相似三角形的判定定理与性质,熟记判定定理和性质是解题关键.23、(1);(2)(﹣3,1)或(1,﹣3).【分析】(1)先利用一次解析式确定A点坐标为(﹣1,3),然后把A点坐标代入y=中求出k得到反比例函数解析式;(2)设P(t,﹣),利用三角形面积公式得到×3×|﹣+1|=3,然后解方程求出t,从而得到P点坐标.【题目详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024汽车定点加油合同
- 2024年市场调研与顾问合同
- 2024年监理工程师《合同管理》考前练习题
- 2024年城市综合体开发与运营总包合同
- 2024年云计算服务定制合同及其技术支持协议
- 2024-2025学年高中地理第一章人口的变化3人口的合理容量课时作业含解析新人教版必修2
- 2024-2025学年新教材高中生物第3章生态系统及其稳定性3生态系统的物质循环学案新人教版选择性必修2
- 2024-2025学年高中生物寒假作业4种群和群落含解析
- 2024-2025学年高中地理第1章宇宙中的地球第3节第3课时地球公转的地理意义作业含解析湘教版必修1
- 2024办公设备共享协议
- DB32T 3713-2020 高速公路建设工程施工班组管理规范
- (完整版)气管插管技术PPT课件
- 房建工程竣工资料监理审查报告
- 名著导读《童年》完整版PPT课件
- 第二讲水轮机结构
- 一年级趣味数学小故事
- 托勒密定理及逆定理的证明
- 干燥综合症PPT课件 (2)
- 液态硅胶模具介绍专题培训课件
- 围手术期管理培训试题及答案(共6页)
- 小学数学命题设计案例解析共60页文档课件
评论
0/150
提交评论