版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省松原市前郭五中学2024届数学九年级第一学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.反比例函数在第一象限的图象如图所示,则k的值可能是()A.3 B.5 C.6 D.82.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率3.方程的根是()A.2 B.0 C.0或2 D.0或34.如图,在平行四边形中,,,那么的值等于()A. B. C. D.5.已知反比例函数y=的图象上有三点A(4,y1),B(1.y1),c(,y3)则y1、y1、y3的大小关系为()A.y1>y1>y3 B.y1>y1>y3 C.y3>y1>y1 D.y3>y1>y16.运动会的领奖台可以近似的看成如图所示的立体图形,则它的左视图是()A. B.C. D.7.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为()A.向左平移个单位,向下平移个单位B.向左平移个单位,向上平移个单位C.向右平移个单位,向下平移个单位D.向右平移个单位,向上平移个单位8.某人从处沿倾斜角为的斜坡前进米到处,则它上升的高度是()A.米 B.米 C.米 D.米9.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长为()A.2 B.3 C.2 D.310.在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知是方程的一个根,则代数式的值为__________.12.如图,AB是⊙O的直径,AC是⊙O的切线,连结OC交⊙O于点D,连结BD,∠C=30°,则∠ABD的度数是_____°.13.如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_____.14.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.15.如图,四边形是的内接四边形,且,点在的延长线上,若,则的半径_________________.16.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.17.如图,在中,点在边上,与边分别相切于两点,与边交于点,弦与平行,与的延长线交于点若点是的中点,,则的长为_____.18.已知反比例函数的图象经过点(2,﹣3),则此函数的关系式是________.三、解答题(共66分)19.(10分)如图1,在中,,.(1)求边上的高的长;(2)如图2,点、分别在边、上,、在边上,当四边形是正方形时,求的长.20.(6分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有______人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在______组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?21.(6分)(1)计算;(2)解不等式.22.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.23.(8分)如图,在⊿OAB中,∠OAB=90°.OA=AB=6.将⊿OAB绕点O逆时针方向旋转90°得到⊿OA1B1(1)线段A1B1的长是∠AOA1的度数是(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.24.(8分)若为实数,关于的方程的两个非负实数根为、,求代数式的最大值.25.(10分)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.26.(10分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k的取值范围,即可得答案.【题目详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方,∴<2,即k<6,∴3<k<6,故选:B.【题目点拨】本题考查了反比例函数的图象的性质,熟记k=xy是解题关键.2、C【解题分析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.3、D【分析】先把右边的x移到左边,然后再利用因式分解法解出x即可.【题目详解】解:故选D.【题目点拨】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法是解决本题的关键.4、D【分析】由题意首先过点A作AF⊥DB于F,过点D作DE⊥AB于E,设DF=x,然后利用勾股定理与含30°角的直角三角形的性质,表示出个线段的长,再由三角形的面积,求得x的值,继而求得答案.【题目详解】解:过点A作AF⊥DB于F,过点D作DE⊥AB于E.设DF=x,∵∠ADB=60°,∠AFD=90°,∴∠DAF=30°,则AD=2x,∴AF=x,又∵AB:AD=3:2,∴AB=3x,∴,∴,解得:,∴.故选:D.【题目点拨】本题考查平行四边形的性质和三角函数以及勾股定理.解题时注意掌握辅助线的作法以及注意数形结合思想与方程思想的应用.5、C【分析】把A、B、C的坐标分别代入y=,分别求出y1、y1、y2的值,从而得到它们的大小关系.【题目详解】解:把A(4,y1),B(1.y1),c(,y2)分别代入y=,得y1=,y1==,y2==所以y1<y1<y2.故选:C.【题目点拨】本题考查的知识点是根据反比例函数解析式自变量的值求函数值,比较基础.6、D【分析】根据从左边看得到的图形是左视图,可得答案.【题目详解】解:由左视图的定义知该领奖台的左视图如下:故选D.【题目点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.7、D【解题分析】二次函数y=x1+4x+3=(x+1)1-1,将其向右平移1个单位,再向上平移1个单位得到二次函数y=x1.故选D.点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.8、A【分析】利用坡角的正弦值即可求解.【题目详解】解:∵∠ACB=90°,∠A=α,AB=600,∴sinα=,∴BC=600sinα.
故选A.【题目点拨】此题主要考查坡度坡角问题,正确掌握坡角的定义是解题关键.9、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到,则利用垂径定理得到OB⊥AC,所以∠ABO=∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【题目详解】连接OB,如图:
∵AB=BC,
∴,
∴OB⊥AC,
∴OB平分∠ABC,
∴∠ABO=∠ABC=×120°=60°,
∵OA=OB,
∴∠OAB=60°,
∵AD为直径,
∴∠ABD=90°,
在Rt△ABD中,AB=AD=3,
∴BD=.故选D.【题目点拨】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.10、D【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【题目详解】延长EF和BC,交于点G,∵3DF=4FC,∴,∵矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE=,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴,设CG=3x,DE=4x,则AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=−1,∴BC=7+4x=7+4−4=3+4,故选:D.【题目点拨】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.二、填空题(每小题3分,共24分)11、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【题目详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【题目点拨】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.12、30°【分析】根据切线的性质求出∠OAC,结合∠C=30°可求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【题目详解】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣30°=60°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=AOC=30°,故答案为:30°.【题目点拨】本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数.13、1【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【题目详解】连接,∵半径是5,,∴,根据勾股定理,,∴,因此弦的长是1.【题目点拨】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.14、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【题目详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【题目点拨】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.15、【分析】根据圆内接四边形的性质,证得是等边三角形,再利用三角函数即可求得答案.【题目详解】如图,连接BD,过点O作OF⊥BD于F,∵四边形是的内接四边形,且AB=AD=8,∠DCE=60,∴∠DCE=∠A=60,∠BOD=2∠A=120,∴是等边三角形,AB=AD=BD=8,∵OB=OD,OF⊥BD,∴∠BOF=BF=,∴.故答案为:.【题目点拨】本题考查了圆内接四边形的性质,等边三角形的判定和性质,三角形函数的应用等知识,运用“圆内接四边形的任意一个外角等于它的内对角”证得∠A=60是解题的关键.16、【解题分析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可.【题目详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球的概率是,故答案为:.【题目点拨】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.17、.【分析】连接交于,根据已知条件可得出,点是的中点,再由垂径定理得出CE垂直平分,由此得出是等边三角形,又因为BC、AB分别是的切线,进而得出是等边三角形,利用角之间的关系,可得出,从而可得出OD的长.【题目详解】解:连接设交于.与相切于点,于..,..点是的中点;,,是的中点,垂直平分,,是等边三角形,,分别是的切线,,,是等边三角形,,,,的半径为.故答案为.【题目点拨】本题考查的知识点有圆的切线定理,垂径定理,以及等边三角形的性质等,解题的关键是结合题目作出辅助线.18、【解题分析】试题分析:利用待定系数法,直接把已知点代入函数的解析式即可求得k=-6,所以函数的解析式为:.三、解答题(共66分)19、(1)9.6;(2).【分析】(1)过点作于点,根据三线合一和勾股定理得BC上的高AM的长,再根据面积法即可解答;(2)设,则,因为可得,再根据相似三角形对应边成比例得,即,从而得解.【题目详解】解:(1)如图1,过点作于点.∵,∴(三线合一)在中,由勾股定理得.又∵∴(2)如图,设与交于点.∵四边形是正方形∴,,.设,则由可得,从而,即解得∴(本题也可通过,列方程求解)【题目点拨】本题考查面积法求高、三角形相似的判定与性质的综合应用,是比较经典的题目.20、(1)400,图详见解析;(2)B;(3)660人.【分析】(1)用E组的人数除以E组所占的百分比即可得出学生总人数;根据总人数乘以B组所占百分比可得B组的人数,利用A、C各组的人数除以总人数即得A、C两组所占百分比,进而可补全两幅统计图;(2)根据中位数的定义判断即可;(3)利用总人数乘以A、B两组的百分比之和求解即可.【题目详解】解:(1)40÷10%=400,∴抽取的学生共有400人;B组人数为:400×30%=120,A组占:100÷400=25%,C组占:80÷400=20%,补全统计图如下:故答案为:400;(2)∵A组有100人,B组有120人,C组有80人,D组有60人,E组有40人,∴400的最中间的两个数在B组,∴测试成绩的中位数落在B组.故答案为:B;(3)1200×(25%+30%)=660,∴该校初三测试成绩为优秀的学生有660人.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到解题的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)0;(2);【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质和绝对值的性质分别化简得出答案;(2)先把不等式①按照去括号、移项、合并同类项、系数化为1的方法求出其解集;再把不等式②按照去分母、移项、合并同类项、系数化为1的方法求出其解集,最后求出其公共解集即可;【题目详解】解:(1)原式===0;(2)解不等式①得,x>﹣4;解不等式②得,;∴原不等式组的解集是;【题目点拨】本题主要考查了实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组,掌握实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组是解题的关键.22、(1)见解析;(2)125【解题分析】(1)连接OC.只要证明AE∥OC即可解决问题;(2)根据角平分线的性质定理可知CE=CF,利用面积法求出CF即可;【题目详解】(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵12•OC•CD=12•OD•∴CF=125∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=125【题目点拨】本题主要考查平行线的判定、角平分线的性质,熟练掌握这些知识点是解答的关键.23、(1)6,90;(2)见解析;(3)1【分析】(1)根据旋转的性质即可直接求解;
(2)根据旋转的性质以及平行线的判定定理证明B1A1∥OA且A1B1=OA即可证明四边形OAA1B1是平行四边形;
(3)利用平行四边形的面积公式求解.【题目详解】解:(1)由旋转的性质可知:A1B1=AB=6,∠AOA1=90°.
故答案是:6,90°;
(2)∵A1B1=AB=6,OA1=OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,
∴∠OA1B1=∠AOA1,A1B1=OA,
∴B1A1∥OA,
∴四边形OAA1B1是平行四边形;
(3)S=OA•A1O=6×6=1.
即四边形OAA1B1的面积是1.故答案为(1)6,90;(2)见解析;(3)1.【题目点拨】本题考查旋转的性质以及平行四边形的判定和面积公式,证明B1A1∥OA是关键.24、1【分析】根据根的判别式和根与系数的关系进行列式求解即可;【题目详解】∵,,,,,,,当时,原式=-15,当时,原式=1,代数式的最大值为1.【题目点拨】本题主要考查了一元二次方程的知识点,准确应用根的判别式和根与系数的关系是解题的关键.25、(1)A社区居民人口至少有2.1万人;(2)10.【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;
(2)A社区的知晓人数+B社区的知晓人数=7.1×76%,据此列出关于m的方程并解答.【题目详解】解:(1)设A社区居民人口有x万人,则B社区有(7.1−x)万人,
依题意得:7.1−x≤2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北大学知行学院《电子商务概论》2023-2024学年第一学期期末试卷
- 《奥赛试题选解》课件
- 心血管护理科研实践
- 红河学院《作物栽培学》2023-2024学年第一学期期末试卷
- 心脏骤停护理应急预案
- 《如何更有效使用WF》课件
- 员工思想现状及分析
- 消防安全试题
- 心血管介入手术护理PTCA术后
- 第09讲 解三角形中的最值及范围问题(学生版)-2025版高中数学一轮复习考点帮
- 湖北省武汉市部分学校2024-2025学年高一上学期11月期中调研数学试题(含答案)
- 2024-2030年中国数据中心IT基础设施第三方服务行业前景预测及投资模式分析报告
- 医院培训课件:《医院感染预防和职业防护》
- 节约粮食英文课件
- 固体废弃物专项措施方案
- 2024年上海民政局夫妻离婚协议书
- 青年创业就业见习基地项目建设方案
- 2024年刑法知识考试题库含答案【满分必刷】
- 啤酒酿造与文化学习通超星期末考试答案章节答案2024年
- 50万吨生物柴油建设项目可行性研究报告
- 【核心素养目标】统编版 选必1 第一单元 第1课 中国古代政治制度的形成与发展 教学设计
评论
0/150
提交评论