




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邢台市宁晋县2024届数学九上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切2.抛物线如图所示,给出以下结论:①,②,③,④,⑤,其中正确的个数是()A.2个 B.3个 C.4个 D.5个3.下列说法正确的是()A.等弧所对的圆心角相等 B.平分弦的直径垂直于这条弦C.经过三点可以作一个圆 D.相等的圆心角所对的弧相等4.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计5.如图,方格纸中4个小正方形的边长均为2,则图中阴影部分三个小扇形的面积和为()A. B. C. D.6.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.107.如图,边长为的正方形的对角线与交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕交于点,则()A. B. C. D.8.若点在反比例函数的图象上,则关于的二次方程的根的情况是().A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定9.抛物线y=2(x﹣1)2+3的对称轴为()A.直线x=1B.直线y=1C.直线y=﹣1D.直线x=﹣110.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称二、填空题(每小题3分,共24分)11.一个布袋里放有5个红球,3个黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是____________.12.如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果,,那么线段CE的长是______.13.已知⊙半径为,点在⊙上,,则线段的最大值为_____.14.在平面直角坐标系中,二次函数与反比例函数的图象如图所示,若两个函数图象上有三个不同的点,,,其中为常数,令,则的值为_________.(用含的代数式表示)15.如图,是的中线,点在延长线上,交的延长线于点,若,则___________.16.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.17.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长18.关于的方程的一个根是,则它的另一个根是__________.三、解答题(共66分)19.(10分)空间任意选定一点,以点为端点作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,轴方向表示的量称为几何体码放的层数;如图是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作(1,2,6),如图的几何体码放了排列层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组(3,2,4)所对应的码放的几何体是_____;(2)图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(___,____,____),组成这个几何体的单位长方体的个数为____个;(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用表示)(4)当时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(___,___,___),此时求出的这个几何体表面积的大小为________.(缝隙不计)20.(6分)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD(2)求证:DE为⊙O的切线21.(6分)如图,是⊙的弦,交于点,过点的直线交的延长线于点,且是⊙的切线.(1)判断的形状,并说明理由;(2)若,求的长;(3)设的面积是的面积是,且.若⊙的半径为,求.22.(8分)如图,抛物线与x轴相交于两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.⑴求此抛物线的解析式;⑵当点位于轴下方时,求面积的最大值;⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.①求关于的函数解析式,并写出自变量的取值范围;②当时,直接写出的面积.23.(8分)某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元。求该市政府从2017年到2019年对校舍建设投入资金的年平均增长率.24.(8分)在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.(1)如图①,当时,求点的坐标;(2)如图②,当点落在的延长线上时,求点的坐标;(3)当点落在线段上时,求点的坐标(直接写出结果即可).25.(10分)已知实数满足,求的值.26.(10分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【题目详解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1与⊙O2相交.
故选A.【题目点拨】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.2、D【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,再根据与x轴的交点坐标代入分析即可得到结果;【题目详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴ab<0,故①②正确;当x=-1时,,故③正确;当x=1时,根据图象可得,故④正确;根据函数图像与x轴有两个交点可得,故⑤正确;故答案选D.【题目点拨】本题主要考查了二次函数图象与系数的关系,准确分析每一个数据是解题的关键.3、A【分析】根据圆心角、弧、弦的关系、确定圆的条件、垂径定理的知识进行判断即可.【题目详解】等弧所对的圆心角相等,A正确;平分弦的直径垂直于这条弦(此弦不能是直径),B错误;经过不在同一直线上的三点可以作一个圆,C错误;相等的圆心角所对的弧不一定相等,故选A.【题目点拨】此题考查圆心角、弧、弦的关系,解题关键在于掌握以及圆心角、弧、弦的关系4、A【解题分析】根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.5、D【分析】根据直角三角形的两锐角互余求出∠1+∠2=90°,再根据正方形的对角线平分一组对角求出∠3=45°,然后根据扇形面积公式列式计算即可得解.【题目详解】解:由图可知,∠1+∠2=90°,∠3=45°,
∵正方形的边长均为2,
∴阴影部分的面积=.
故选:D.【题目点拨】本题考查了中心对称,观察图形,根据正方形的性质与直角三角形的性质求出阴影部分的圆心角是解题的关键.6、A【解题分析】试题分析:根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14考点:二次函数的性质7、D【分析】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,根据正方形的性质得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根据折叠的性质得到∠EDF=∠CDF,设OM=PM=x,根据相似三角形的性质即可得到结论.【题目详解】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,∵正方形的边长为,∴OD=1,OC=1,OQ=DQ=,由折叠可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,设OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故选D【题目点拨】此题考查正方形的性质,折叠的性质,相似三角形的性质与判定,角平分线的性质,解题关键在于作辅助线8、A【分析】将点P的坐标代入反比例函数的表达式中求出k的值,进而得出一元二次方程,根据根的判别式进行判断即可.【题目详解】∵点在反比例函数的图象上,∴,即,∴关于的二次方程为,∵,∴方程有两个不相等的实数根,故选A.【题目点拨】本题考查利用待定系数法求解反比例函数的表达式,根的判别式,熟练掌握根的判别式是解题的关键.9、A【解题分析】解:∵y=2(x﹣1)2+3,∴该抛物线的对称轴是直线x=1.故选A.10、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【题目详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【题目点拨】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.二、填空题(每小题3分,共24分)11、0.2【分析】利用列举法求解即可.【题目详解】将布袋里10个球按颜色分别记为,所有可能结果的总数为10种,并且它们出现的可能性相等任意摸出一个球是黑球的结果有2种,即因此其概率为:.【题目点拨】本题考查了用列举法求概率,根据题意列出所有可能的结果是解题关键.12、【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答..【题目详解】解:延长AG交BC于D点,∵中线BF、CE交于点G,∵△ABC的两条中线AD、CE交于点G,
∴点G是△ABC的重心,D是BC的中点,
∴AG=AD,CG=CE,BG=BF,∵,,∴,.∵CE⊥BF,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC中,CG=,∴,故答案为:.【题目点拨】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.13、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【题目详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【题目点拨】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.14、【分析】根据题意由二次函数的性质、反比例函数的性质可以用含m的代数式表示出W的值,本题得以解决.【题目详解】解:∵两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,
∴其中有两个点一定在二次函数图象上,且这两个点的横坐标互为相反数,第三个点一定在反比例函数图象上,
假设点A和点B在二次函数图象上,则点C一定在反比例函数图象上,
∴m=,得x3=,
∴=x1+x2+x3=0+x3=;故答案为:.【题目点拨】本题考查反比例函数的图象和图象上点的坐标特征、二次函数的图象和图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数和二次函数的性质解答.15、5【分析】过D点作DH∥AE交EF于H点,证△BDH∽△BCE,△FDH∽△FAE,根据对应边成比例即可求解.【题目详解】过D点作DH∥AE交EF于H点,∴∠BDH=∠BCE,∠BHD=∠BEC,∴△BDH∽△BCE同理可证:△FDH∽△FAE∵AD是△ABC的中线∴BD=DC∴又∴∴∴故答案为:5【题目点拨】本题考查的是相似三角形,找到两队相似三角形之间的联系是关键.16、60°或120°【解题分析】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,根据切线的性质得OC′⊥AB′,OC″⊥AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°.【题目详解】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,则OC′⊥AB′,OC″⊥AB″,在Rt△OAC′中,∵OC′=1,OA=2,∴∠OAC′=30°,∴∠BAB′=60°,同理可得∠OAC″=30°,∴∠BAB″=120°,综上所述,α的值为60°或120°.故答案为60°或120°.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了旋转的性质和直角三角形的性质.17、AD=1【分析】通过证明△ADE∽△ACB,可得,即可求解.【题目详解】解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴∴,∴AD=1.【题目点拨】本题考查了相似三角形的判定与性质定理,熟练掌握定理是解题的关键.18、6【分析】根据一元二次方程的根与系数的关系解答即可.【题目详解】解:设方程的另一个根是,则,解得:.故答案为:6.【题目点拨】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次方程的两根之和与两根之积与其系数的关系是解此类题的关键.三、解答题(共66分)19、(1)B;(2);;;;(3);(4);;;.【分析】(1)根据有序数组中x、y和z表示的实际意义即可得出结论;(2)根据三视图的定义和有序数组中x、y和z表示的实际意义即可得出结论;(3)根据题意,分别从不同方向找出面积为、和的长方形,用含x、y、z的式子表示出它们的个数,然后根据表面积公式计算即可;(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3,然后分类讨论,根据(3)的公式分别求出在每一种情况下的最小值,最后通过比较找出最小的即可得出结论.【题目详解】解:(1)有序数组(3,2,4)表示3排2列4层,故B选项符合故选:B.(2)由左视图和俯视图可知:该几何体共码放了2排,由主视图和俯视图可知:该几何体共码放了3列,由主视图和左视图可知:该几何体共码放了2层,故这种码放方式的有序数组为(,,);组成这个几何体的单位长方体的个数为2×3×2=;故答案为:;;;;(3)根据题意可知:从几何体的前面和后面看:面积为的长方形共有2yz个,从几何体的左面和右面看:面积为的长方形共有2xz个,从几何体的上面和下面看:面积为的长方形共有2xy个,∴几何体表面积(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3①当xyz=1×1×12时∵根据(3)中公式可知,此时当x=1,y=1,z=12时,几何体表面积最小此时;②当xyz=1×2×6时∵根据(3)中公式可知,此时当x=1,y=2,z=6时,几何体表面积最小此时;③当xyz=1×3×4时∵根据(3)中公式可知,此时当x=1,y=3,z=4时,几何体表面积最小此时;④当xyz=2×2×3时∵根据(3)中公式可知,此时当x=2,y=2,z=3时,几何体表面积最小此时;∵∴这个有序数组为(,,),最小面积为.故答案为:;;;1.【题目点拨】此题考查的是新定义类问题,读懂材料、并归纳总结公式和掌握三视图的概念和表面积的求法和分类讨论的数学思想是解决此题的关键.20、(1)证明见解析;(2)证明见解析.【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90°即可.【题目详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE,∴DE是⊙O的切线.考点:切线的判定.21、(1)是等腰三角形,理由见解析;(2)的长为;(3).【解题分析】(1)首先连接OB,根据等腰三角形的性质由OA=OB得,由点C在过点B的切线上,且,根据等角的余角相等,易证得∠PBC=∠CPB,即可证得△CBP是等腰三角形;(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理得到,然后解方程即可;(3)作CD⊥BP于D,由等腰三角形三线合一的性质得,由,通过证得,得出即可求得CD,然后解直角三角形即可求得.【题目详解】(1)是等腰三角形,理由:连接,⊙与相切与点,,即,,是等腰三角形(2)设,则,在中,,,,,解得,即的长为;(3)解:作于,,,,,,,,,.【题目点拨】本题考查了切线的性质、勾股定理、等腰三角形的判定与性质以及三角形相似的判定和性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.22、(1);(2)8;(3)①(),(),();②6.【分析】(1)将点C(0,-3)代入y=(x-1)2+k即可;(2)易求A(-1,0),B(3,0),抛物线顶点为(1,-4),当P位于抛物线顶点时,△ABP的面积有最大值;(3)①当0<m≤1时,h=-3-(m2-2m-3)=-m2+2m;当1<m≤2时,h=-1-(-4)=1;当m>2时,h=m2-2m-3-(-4)=m2-2m+1;②当h=9时若-m2+2m=9,此时△<0,m无解;若m2-2m+1=9,则m=4,则P(4,5),△BCP的面积=(4+1)×3=6;【题目详解】解:(1)因为抛物线与轴交于点,把代入,得,解得,所以此抛物线的解析式为,即;(2)令,得,解得,所以,所以;解法一:由(1)知,抛物线顶点坐标为,由题意,当点位于抛物线顶点时,的面积有最大值,最大值为;解法二由题意,得,所以,所以当时,有最大值8;(3)①当时,;当时,;当时,;②当h=9时
若-m2+2m=9,此时△<0,m无解;若m2-2m+1=9,则m=4,∴P(4,5),∵B(3,0),C(0,-3),∴△BCP的面积=(4+1)×3=6;【题目点拨】本题考查二次函数的图象及性质,是二次函数综合题;熟练掌握二次函数的性质,数形结合,分类讨论是解题的关键.23、20%【分析】根据题意设该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆买卖赊购合同
- 仓房买卖合同协议书
- 的聘用合同年
- 银行解除借款合同
- 《苏武传》教学设计 2024-2025学年统编版高中语文选择性必修中册
- Unit 1 How can I get there?PartA(教学设计)-2024-2025学年人教PEP版英语六年级上册
- 山东医学高等专科学校《物理化学B(下)》2023-2024学年第二学期期末试卷
- 山东华宇工学院《土木工程材料》2023-2024学年第二学期期末试卷
- 山西药科职业学院《财务大数据决策》2023-2024学年第二学期期末试卷
- 内蒙古电子信息职业技术学院《有色冶金设备》2023-2024学年第二学期期末试卷
- 中债违约债券估值方法(2020年版)
- 《经典常谈》课件
- 四川省2024年中考数学试卷十七套合卷【附答案】
- 北师大版二年级数学下册全册10套试卷(附答案)
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- 数字出版概论 课件 第六章 数字内容加工、管理技术
- 糖尿病并发症的早期筛查
- 2019年山东省职业院校技能大赛中职组“沙盘模拟企业经营”赛项规程
- GB/T 32399-2024信息技术云计算参考架构
- 初中体育与健康 初二 水平四(八年级)田径大单元教学设计+快速跑教案
- 2024年西南大学附中初升高选拔测试语文试卷真题(精校打印)
评论
0/150
提交评论