湖北省黄冈市麻城市顺河镇2024届数学九年级第一学期期末复习检测试题含解析_第1页
湖北省黄冈市麻城市顺河镇2024届数学九年级第一学期期末复习检测试题含解析_第2页
湖北省黄冈市麻城市顺河镇2024届数学九年级第一学期期末复习检测试题含解析_第3页
湖北省黄冈市麻城市顺河镇2024届数学九年级第一学期期末复习检测试题含解析_第4页
湖北省黄冈市麻城市顺河镇2024届数学九年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈市麻城市顺河镇2024届数学九年级第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.不等式的解为()A. B. C. D.2.若关于x的一元二次方程有实数根,则实数k的取值范围为A.,且 B.,且C. D.3.使得关于的不等式组有解,且使分式方程有非负整数解的所有的整数的和是()A.-8 B.-10 C.-16 D.-184.已知,则的值是()A. B.2 C. D.5.将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=()A.1 B. C. D.6.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②,③,使△ADE与△ACB一定相似()A.①② B.② C.①③ D.①②③7.如图,矩形的对角线交于点O,已知则下列结论错误的是()A. B.C. D.8.如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B. C. D.9.如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为()A. B. C. D.10.抛物线与轴交于、两点,则、两点的距离是()A. B. C. D.二、填空题(每小题3分,共24分)11.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.12.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.13.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于海里.14.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;15.二次函数y=ax2+bx+3的图象经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_____.16.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.17.点(2,3)关于原点对称的点的坐标是_____.18.如图,tan∠1=____________.三、解答题(共66分)19.(10分)如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.(1)求抛物线的解析式及顶点D的坐标;(2)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求F点坐标;(3)直线DE上是否存在点P到直线AD的距离与到x轴的距离相等?若存在,请求出点P,若不存在,请说明理由.20.(6分)如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.(1)求B、C的坐标;(2)当轴时,求抛物线的函数表达式;(3)①求动点所成的图像的函数表达式;②连接,求的最小值.21.(6分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB.(1)证明:△ADC∽△ACB;(2)若AD=2,BD=6,求边AC的长.22.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.23.(8分)综合与实践:如图,已知中,.(1)实践与操作:作的外接圆,连结,并在图中标明相应字母;(尺规作图,保留作图痕迹,不写作法)(2)猜想与证明:若,求扇形的面积.24.(8分)先化简,再求值:÷(1+x+),其中x=tan60°﹣tan45°.25.(10分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().26.(10分)如图1,抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点A和点B(1,0),与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)求抛物线的解析式;(2)点P是直线BE上方抛物线上一动点,连接PD、PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以A、M、N、K为顶点的四边形是正方形时,请求出点N的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据一元一次不等式的解法进行求解即可.【题目详解】解:移项得,,合并得,,系数化为1得,.故选:B.【题目点拨】本题考查一元一次不等式的解法,属于基础题型,明确解法是关键.2、A【解题分析】∵原方程为一元二次方程,且有实数根,∴k-1≠0且△=62-4×(k-1)×3=48-12k≥0,解得k≤4,∴实数k的取值范围为k≤4,且k≠1,故选A.3、D【分析】根据不等式组的解集的情况,得出关于m的不等式,求得m的取值范围,再解分式方程得出x,根据x是非负整数,得出m所有值的和.【题目详解】解:∵关于的不等式组有解,则,∴,又∵分式方程有非负整数解,∴为非负整数,∵,∴-10,-6,-2由,故答案选D.【题目点拨】本题考查含参数的不等式组及含参数的分式方程,能够准确解出不等式组及方程是解题的关键.4、C【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【题目详解】解:∵∴x=5k(k≠0),y=2k(k≠0)∴故选:C.【题目点拨】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.5、D【分析】根据题意可以写出平移后的函数解析式,然后根据截x轴所得的线段长为4,可以求得a的值,本题得以解决.【题目详解】解:二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y=a(x﹣3)2﹣2,当y=0时,ax2﹣6ax+9a﹣2=0,设方程ax2﹣6ax+9a﹣2=0的两个根为x1,x2,则x1+x2=6,x1x2=,∵平移后的函数截x轴所得的线段长为4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故选:D.【题目点拨】本题考查解二次函数综合题,解题关键是根据题意可以写出平移后的函数解析式.6、C【分析】根据相似三角形的判定方法即可一一判断;【题目详解】解:∵∠A=∠A,∠AED=∠B,

∴△AED∽△ABC,故①正确,

∵∠A=∠A,,

∴△AED∽△ABC,故③正确,

由②无法判定△ADE与△ACB相似,

故选C.【题目点拨】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.7、C【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.【题目详解】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,选项A正确;选项B,在Rt△ABC中,tanα=,即BC=m•tanα,选项B正确;选项C,在Rt△ABC中,AC=,即AO=,选项C错误;选项D,∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,选项D正确.故选C.【题目点拨】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.8、C【分析】可利用正方形的边把对应的线段表示出来,利用一角相等且夹边对应成比例两个三角形相似,根据各个选项条件筛选即可.【题目详解】解:根据勾股定理,AC=,BC=,AB=所以,,,,则+=所以,利用勾股定理逆定理得△ABC是直角三角形

所以,=A.不存在直角,所以不与△ABC相似;B.两直角边比(较长的直角边:较短的直角边)=≠2,所以不与△ABC相似;C.选项中图形是直角三角形,且两直角边比(较长的直角边:较短的直角边)=2,故C中图形与所给图形的三角形相似.D.不存在直角,所以不与△ABC相似.

故选:C.【题目点拨】此题考查了勾股定理在直角三角形中的运用,及判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.9、D【解题分析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为,即OC=2.∴AC是圆的切线.∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB为⊙O的切线,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B点的坐标为.故选D.10、B【分析】令y=0,求出抛物线与x轴交点的横坐标,再把横坐标作差即可.【题目详解】解:令,即,解得,,∴、两点的距离为1.故选:B.【题目点拨】本题考查了抛物线与x轴交点坐标的求法,两点之间距离的表示方法.二、填空题(每小题3分,共24分)11、y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【题目详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,

∴新抛物线顶点坐标为(-2,-1),

∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.

故答案为:y=-5(x+2)2-1.【题目点拨】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.12、(3,﹣10)【分析】首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.【题目详解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,∴此时点D的坐标为(3,﹣10).故答案为:(3,﹣10).【题目点拨】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键.13、10【题目详解】试题分析:BD设为x,因为C位于北偏东30°,所以∠BCD=30°在RT△BCD中,BD=x,CD=3x又∵∠CAD=30°,在RT△ADC中,AB=20,AD=20+x,又∵△ADC∽△CDB,所以ADCD即:(3x)2=x(20+x),求出x=10,故考点:1、等腰三角形;2、三角函数14、3或9或或【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【题目详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴,即,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案为:3或9或或.【题目点拨】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.15、0,2【分析】将点A,B代入二次函数解析式,求得的值,再代入,解出答案.【题目详解】∵经过点A(-1,0),B(3,0)∴,解得∴即为解得:或故答案为:或.【题目点拨】熟练掌握待定系数法求二次函数解析式,及提取公因式法解一元二次方程是解题的关键.16、70【解题分析】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.17、(-2,-3).【解题分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).18、【分析】由圆周角定理可知∠1=∠2,再根据锐角三角函数的定义即可得出结论.【题目详解】解:∵∠1与∠2是同弧所对的圆周角,故答案为【题目点拨】本题考查的是圆周角定理,熟知同弧所对的圆周角相等是解答此题的关键.三、解答题(共66分)19、(1)y=﹣x2﹣2x+3,D(﹣1,4);(2)F点坐标为(﹣,);(3)存在,满足条件的P点坐标为(﹣1,﹣1)或(﹣1,﹣﹣1)【分析】(1)把代入得得到关于的方程组,然后解方程组即可求出抛物线解析式,再把解析式配成顶点式可得D点坐标;

(2)如图2,作FQ∥y轴交AC于Q,先利用待定系数法求出直线AC的解析式,设,则,则可表示出,,根据三角形面积公式结合二次函数的性质即可求解;

(3)设,根据得到,最后分两种情况求解即可得出结论.【题目详解】解:(1)把代入得,∴,∴抛物线的解析式为:,∵,∴点D的坐标为:;(2)如图2,作FQ∥y轴交AC于Q,设直线AC的解析式为,把代入,得,解得,∴直线AC的解析式为:.设,则,∴,∴=,当时,△FAC的面积最大,此时F点坐标为(﹣,),(3)存在.∵D(﹣1,4),A(﹣3,0),E(﹣1,0),∴,设,则,,如图3,∵∠HDP=∠EDA,∠DHP=∠DEA=90°∴,∴,∴,当t>0时,,解得:,当t<0时,,解得:,综上所述,满足条件的P点坐标为或【题目点拨】本题是二次函数综合题:主要考查了二次函数图象上点的坐标特征、二次函数的性质相似三角形的判定和性质,会利用待定系数法求函数解析式,判断出是解本题的关键.20、(1)、;(2);(3)①;②.【分析】(1),令,则或4,即可求解;(2)当轴时,则,则,故点,即可求解;(3)构造一线三垂直相似模型由,则,解得:,,故点,,即可求解.【题目详解】解:(1)当时,即,解得或4,故点、的坐标分别为:、;(2)∵等边三角形,∴,∴当轴时,,∴,故点,即,解得:,故抛物线的表达式为:;(3)①如图,过点作于点,过点作轴的垂线于点,过点作轴交轴于点交于点,为等边三角形,∴点为的中点,,∴点,,,,,,,其中,,解得:,,故点,,即动点所成的图像的函数满足,∴动点所成的图像的函数表达式为:.②由①得点,,∴,故当时,的最小值为,即的最小值为.【题目点拨】本题考查了二次函数综合运用,涉及到解直角三角形、三角形相似等,其中(3)构造一线三直角模型,用三角形相似的方法求解点的坐标,是本题的难点.21、(1)见解析;(2)1.【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的对应边对应成比例列式求解即可.【题目详解】(1)证明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴=,AB=AD+DB=2+6=8∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=1.【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.22、(1)1;(2)见解析,【分析】(1)设红球有x个,根据题意得:;(2)列表,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种.【题目详解】解:(1)设红球有x个,根据题意得:,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个(2)列表如下:

红黄黄蓝红---(黄,红)(黄,红)(蓝,红)黄(红,黄)---(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)---(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)---由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种,则P=【题目点拨】考核知识点:用列举法求概率.列表是关键.23、(1)答案见解析;(2)【分析】(1)直角三角形外接圆的圆心在斜边中点,做出AB的垂直平分线找到斜边中点O,然后连接OC即可;(2)根据同弧所对的圆周角是圆心角的一半求出圆心角的度数,然后利用扇形面积公式进行求解.【题目详解】解:(1)如图所示:外接圆与线段为所求.【题目点拨】本题考查尺规作图和扇形面积的求法,掌握直角三角形外接圆的圆心是斜边中点,从而做出斜边的垂直平分线,熟记扇形面积公式并正确计算是本题的解题关键.24、,.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【题目详解】原式•.当x=tan60°﹣tan45°1时,原式.【题目点拨】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.25、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.【解题分析】由菱形的判定及其性质求解可得.【题目详解】证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)【题目点拨】此题考查菱形的判定,掌握判定定理是解题关键.26、(1)y=﹣x2+﹣x+2;(2);(3)N点的坐标为:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根据对称轴公式列出等式,带点到抛物线列出等式,解出即可;(2)先求出A、B、C的坐标,从而求出D的坐标算出BD的解析式,根据题意画出图形,设出P、G的坐标代入三角形的面积公式得出一元二次方程,联立方程组解出即可;(3)分类讨论①当AM是正方形的边时,(ⅰ)当点M在y轴左侧时(N在下方),(ⅱ)当点M在y轴右侧时,②当AM是正方形的对角线时,分别求出结果综合即可.【题目详解】(1)抛物线y=﹣x2+bx+c的对称轴为直线x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论