




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市滨城区2024届数学九年级第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.把分式中的、都扩大倍,则分式的值()A.扩大倍 B.扩大倍 C.不变 D.缩小倍2.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米3.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为()A.60° B.90° C.120° D.150°4.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为()A.3 B.5 C.7 D.95.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.306.从1到9这9个自然数中任取一个,是偶数的概率是()A. B. C. D.7.以下、、、四个三角形中,与左图中的三角形相似的是()A. B. C. D.8.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将1010减去它的,再减去余下的,再减去余下的,再减去余下的,……,依此类推,直到最后减去余下的,最后的结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x、y,多项式的值不小于1.其中正确的个数是()A.1 B.1 C.3 D.49.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是()A.1 B.7 C.1或7 D.无法确定10.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是()A.3 B.﹣3 C.1 D.﹣111.如图,矩形中,,,点为矩形内一动点,且满足,则线段的最小值为()A.5 B.1 C.2 D.312.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.二、填空题(每题4分,共24分)13.如图,在等腰中,,点是以为直径的圆与的交点,若,则图中阴影部分的面积为__________.14.已知函数的图象如图所示,若直线与该图象恰有两个不同的交点,则的取值范围为_____.15.若,则_______.16.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).17.如图,分别为矩形的边,的中点,若矩形与矩形相似,则相似比等于__________.18.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为3cm,则该莱洛三角形的周长为_______cm.三、解答题(共78分)19.(8分)已知二次函数的图象经过点A(0,4),B(2,m).(1)求二次函数图象的对称轴.(2)求m的值.20.(8分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.21.(8分)如图,在平面直角坐标系中,己知点,点在轴上,并且,动点在过三点的拋物线上.(1)求抛物线的解析式.(2)作垂直轴的直线,在第一象限交直线于点,交抛物线于点,求当线段的长有最大值时的坐标.并求出最大值是多少.(3)在轴上是否存在点,使得△是等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(10分)解一元二次方程(1)(2)23.(10分)如图,已知点B的坐标是(-2,0),点C的坐标是(8,0),以线段BC为直径作⊙A,交y轴的正半轴于点D,过B、C、D三点作抛物线.(1)求抛物线的解析式;(2)连结BD,CD,点E是BD延长线上一点,∠CDE的角平分线DF交⊙A于点F,连结CF,在直线BE上找一点P,使得△PFC的周长最小,并求出此时点P的坐标;(3)在(2)的条件下,抛物线上是否存在点G,使得∠GFC=∠DCF,若存在,请直接写出点G的坐标;若不存在,请说明理由.24.(10分)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.25.(12分)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=1.求证:对于任意实数t,方程都有实数根;26.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
参考答案一、选择题(每题4分,共48分)1、C【分析】依据分式的基本性质进行计算即可.【题目详解】解:∵a、b都扩大3倍,∴∴分式的值不变.故选:C.【题目点拨】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.2、B【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【题目详解】据相同时刻的物高与影长成比例,
设这棵树的高度为xm,
则可列比例为解得,x=4.1.
故选:B【题目点拨】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.3、C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【题目详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,
∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:解得:n=1.
故选:C.【题目点拨】此题主要考查了圆锥侧面积公式的应用以及与展开图各部分对应情况,得出圆锥侧面展开图等于扇形面积是解决问题的关键.4、B【分析】根据图表列出算式,然后把x=-2代入算式进行计算即可得解.【题目详解】解:把x=﹣2代入得:1﹣2×(﹣2)=1+4=1.故选:B.【题目点拨】此题考查代数式求值,解题关键在于掌握运算法则.5、D【题目详解】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.6、B【解题分析】∵在1到9这9个自然数中,偶数共有4个,∴从这9个自然数中任取一个,是偶数的概率为:.故选B.7、B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【题目详解】设小正方形的边长为1,根据勾股定理,所给图形的边分别为,,,所以三边之比为A、三角形的三边分别为、、,三边之比为::,故本选项错误;B、三角形的三边分别为、、,三边之比为,故本选项正确;C、三角形的三边分别为、、,三边之比为,故本选项错误;
D、三角形的三边分别为、、,三边之比为,故本选项错误.
故选:B.【题目点拨】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.8、C【分析】画图可判断①;将②转化为算式的形式,求解判断;③是用频率估计概率的考查;④中配成平方的形式分析可得.【题目详解】如下图,∠1=∠1,∠1+∠3=180°,即两边都平行的角,可能相等,也可能互补,①错误;②可用算式表示为:,正确;实验次数越多,则频率越接近概率,③正确;∵≥0,≥0∴≥1,④正确故选:C【题目点拨】本题考查平行的性质、有理数的计算、频率与概率的关系、利用配方法求最值问题,注意②中,我们要将题干文字转化为算式分析.9、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【题目详解】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,EF=OF+OE=1,所以AB与CD之间的距离是1或1.故选:C.【题目点拨】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理及分类讨论的思想的应用.10、D【分析】设方程的另一根为t,根据根与系数的关系得到3+t=2,然后解关于t的一次方程即可.【题目详解】设方程的另一根为t,
根据题意得3+t=2,
解得t=﹣1.
即方程的另一根为﹣1.
所以D选项是正确的.【题目点拨】本题考查了根与系数的关系:是一元二次方程的两根时,,.11、B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【题目详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【题目点拨】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.12、B【解题分析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.二、填空题(每题4分,共24分)13、【分析】取AB的中点O,连接OD,根据圆周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解.【题目详解】取AB的中点O,连接OD,∵在等腰中,,,∴,,∴,∴阴影部分的面积扇形BOD的面积,,故答案为:.【题目点拨】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键.14、【解题分析】直线与有一个交点,与有两个交点,则有,时,,即可求解.【题目详解】解:直线与该图象恰有三个不同的交点,则直线与有一个交点,∴,∵与有两个交点,∴,,∴,∴;故答案为.【题目点拨】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定的范围.15、【分析】由题意直接根据分比性质,进行分析变形计算可得答案.【题目详解】解:,由分比性质,得.故答案为:.【题目点拨】本题考查比例的性质,熟练掌握并利用分比性质是解题的关键.16、不可能【分析】根据随机事件的概念进行判断即可.【题目详解】太阳从西边升起是不可能的,∴太阳从西边升起是不可能事件,故答案为:不可能.【题目点拨】本题考查了随机事件的概念,掌握知识点是解题关键.17、(或)【分析】根据矩形的性质可得EF=AB=CD,AE=AD=BC,根据相似的性质列出比例式,即可得出,从而求出相似比.【题目详解】解:∵分别为矩形的边,的中点,∴EF=AB=CD,AE=AD=BC,∵矩形与矩形相似∴∴∴∴相似比=(或)故答案为:(或).【题目点拨】此题考查的是求相似多边形的相似比,掌握相似多边形的性质是解决此题的关键.18、【分析】直接利用弧长公式计算即可.【题目详解】解:该莱洛三角形的周长=3×.故答案为:.【题目点拨】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.三、解答题(共78分)19、(1)x=1;(2)m=4【分析】(1)由顶点式即可得出该二次函数图象的对称轴;(2)利用二次函数的对称性即可解决问题.【题目详解】解:(1)∵,∴该二次函数图象的对称轴为:直线x=1,(2)∵该二次函数图象的对称轴为:直线x=1,∴A(0,4),B(2,m).是关于直线x=1成对称,故m=4.【题目点拨】本题考查了二次函数的顶点式的性质,掌握顶点式的顶点坐标及对称性是解题的关键.20、(1)(2)点P的坐标;(3)M【分析】(1)待定系数法即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等,可得M在对称轴上,根据两点之间线段最短,可得M点在线段AB上,根据自变量与函数值的对应关系,可得答案;(3)设M(a,a2-2a-3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(-2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.【题目详解】(1)由得,把代入,得,,抛物线的解析式为;(2)连接AB与对称轴直线x=1的交点即为P点的坐标(对称取最值),设直线AB的解析式为,将A(2,-3),B(-1,0)代入,得y=-x-1,将x=1代入,得x=-2,所以点P的坐标为(1,-2);(3)设M()①以AB为边,则AB∥MN,如图2,过M作对称轴y于E,AF轴于F,则或,或∥AM,如图3,则N在x轴上,M与C重合,综上所述,存在以点ABMN为顶点的四边形是平行四边形,或或【题目点拨】本题考查了待定系数法求二次函数的解析式,全等三角形的判定和性质,平行四边形的判定和性质,正确的作出图形是解题的关键.21、(1);(2)存在,最大值为4,此时的坐标为;(3)存在,或或或【分析】(1)先确定A(4,0),B(-1,0),再设交点式y=a(x+1)(x-4),然后把C点坐标代入求出a即可;(2)作PE⊥x轴,交AC于D,垂足为E,如图,易得直线AC的解析式为y=-x+4,设P(x,-x2+3x+4)(0<x<4),则D(x,-x+4),再用x表示出PD,然后根据二次函数的性质解决问题;(3)先计算出AC=4,再分类讨论:当QA=QC时,易得Q(0,0);当CQ=CA时,利用点Q与点A关于y轴对称得到Q点坐标;当AQ=AC=4时可直接写出Q点的坐标.【题目详解】(1)∵C(0,4),∴OC=4,∵OA=OC=4OB,∴OA=4,OB=1,∴A(4,0),B(-1,0),设抛物线解析式为y=a(x+1)(x-4),把C(0,4)代入得a×1×(-4)=4,解得a=-1,∴抛物线解析式为y=-(x+1)(x-4),即y=-x2+3x+4;(2)作PE⊥x轴,交AC于D,垂足为E,如图,设直线AC的解析式为:y=kx+b,∵A(4,0),C(0,4)∴解得,∴直线AC的解析式为y=-x+4,设P(x,-x2+3x+4)(0<x<4),则D(x,-x+4),∴PD=-x2+3x+4-(-x+4)=-x2+4x=-(x-2)2+4,当x=2时,PD有最大值,最大值为4,此时P点坐标为(2,6);(3)存在.∵OA=OC=4,∴AC=4,∴当QA=QC时,Q点在原点,即Q(0,0);当CQ=CA时,点Q与点A关于y轴对称,则Q(-4,0);当AQ=AC=4时,Q点的坐标(4+4,0)或(4-4,0),综上所述,Q点的坐标为(0,0)或(-4,0)或(4+4,0)或(4-4,0).【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图形上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.22、(1),;(2),【分析】(1)根据公式法即可求解;(2)根据因式分解法即可求解.【题目详解】(1)a=2,b=-5,c=1∴b2-4ac=25-8=17>0故x=∴,(2)∴3x-2=0或-x+4=0故,.【题目点拨】此题主要考查一元二次方程的求解,解题的关键是熟知公式法及因式分解法的运用.23、(1);(2);(3)【分析】(1)由BC是直径证得∠OCD=∠BDO,从而得到△BOD∽△DOC,根据线段成比例求出OD的长,设抛物线解析式为y=a(x+2)(x-8),将点D坐标代入即可得到解析式;(2)利用角平分线求出,得到,从而得出点F的坐标(3,5),再延长延长CD至点,可使,得到(-8,8),求出F的解析式,与直线BD的交点坐标即为点P,此时△PFC的周长最小;(3)先假设存在,①利用弧等圆周角相等把点D、F绕点A顺时针旋转90,使点F与点B重合,点G与点Q重合,则Q1(7,3),符合,求出直线FQ1的解析式,与抛物线的交点即为点G1,②根据对称性得到点Q2的坐标,再求出直线FQ2的解析式,与抛物线的交点即为点G2,由此证得存在点G.【题目详解】(1)∵以线段BC为直径作⊙A,交y轴的正半轴于点D,∴∠BDO+∠ODC=90,∵∠OCD+∠ODC=90,∴∠OCD=∠BDO,∵∠DOC=∠DOB=90,∴△BOD∽△DOC,∴,∵B(-2,0),C(8,0),∴,解得OD=4(负值舍去),∴D(0,4)设抛物线解析式为y=a(x+2)(x-8),∴4=a(0+2)(0-8),解得a=,∴二次函数的解析式为y=(x+2)(x-8),即.(2)∵BC为⊙A的直径,且B(-2,0),C(8,0),∴OA=3,A(3,0),∴点E是BD延长线上一点,∠CDE的角平分线DF交⊙A于点F,∴,连接AF,则,∵OA=3,AF=5∴F(3,5)∵∠CDB=90,∴延长CD至点,可使,∴(-8,8),连接F叫BE于点P,再连接PF、PC,此时△PFC的周长最短,解得F的解析式为,BD的解析式为y=2x+4,可得交点P.(3)存在;假设存在点G,使∠GFC=∠DCF,设射线GF交⊙A于点Q,①∵A(3,0),F(3,5),C(8,0),D(0,4),∴把点D、F绕点A顺时针旋转90,使点F与点B重合,点G与点Q重合,则Q1(7,3),符合,∵F(3,5),Q1(7,3),∴直线FQ1的解析式为,解,得,(舍去),∴G1;②Q1关于x轴对称点Q2(7,-3),符合,∵F(3,5),Q2(7,3),∴直线FQ2的解析式为y=-2x+11,解,得,(舍去),∴G2综上,存在点G或,使得∠GFC=∠DCF.【题目点拨】此题是二次函数的综合题,(1)考查待定系数法求函数解析式,需要先证明三角形相似,由此求得线段OD的长,才能求出解析式;(2)考查最短路径问题,此问的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计单位文件管理制度
- 设计装饰公司管理制度
- 诊室护士日常管理制度
- 诊所污水采样管理制度
- 试剂耗材存放管理制度
- 财务资金收款管理制度
- 财政补助收入管理制度
- 货架生产仓库管理制度
- 货物进出码头管理制度
- 货运电梯安全管理制度
- 登山安全培训课件内容
- 防沙治沙光伏一体化技术方案设计
- 12《寻找生活中的标志》(教学设计)-2023-2024学年二年级上册综合实践活动鲁科版
- 架桥机常见安全隐患
- 2025年春新北师大版生物七年级下册课件 第11章 人体的运动 第1节 人体的骨骼
- 学校保洁服务投标方案(技术标)
- 便携式移动电源规范
- 左侧基底节区脑出血护理查房
- 实验室生物安全评估制度(4篇)
- 【MOOC】《电路原理》(东北大学)中国大学慕课答案
- 全国班主任比赛一等奖《高三班主任经验交流》课件
评论
0/150
提交评论