2024届浙江省杭州市拱墅区公益中学数学九年级第一学期期末监测试题含解析_第1页
2024届浙江省杭州市拱墅区公益中学数学九年级第一学期期末监测试题含解析_第2页
2024届浙江省杭州市拱墅区公益中学数学九年级第一学期期末监测试题含解析_第3页
2024届浙江省杭州市拱墅区公益中学数学九年级第一学期期末监测试题含解析_第4页
2024届浙江省杭州市拱墅区公益中学数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州市拱墅区公益中学数学九年级第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60° C.30°或150° D.60°或120°3.如图,已知扇形BOD,DE⊥OB于点E,若ED=OE=2,则阴影部分面积为()A. B. C. D.4.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.5.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=1786.已知点P(-1,4)在反比例函数的图象上,则k的值是()A. B. C.4 D.-47.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有()A.12人 B.18人 C.9人 D.10人8.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:19.如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm10.如图,在平面直角坐标系中,点、在函数的图象上,过点分别作轴、轴的垂线,垂足为、;过点分别作轴、轴的垂线,垂足为、.交于点,随着的增大,四边形的面积()A.增大 B.减小 C.先减小后增大 D.先增大后减小二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.12.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为.13.如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_______.14.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.15.已知⊙O的半径为,圆心O到直线L的距离为,则直线L与⊙O的位置关系是___________.16.如图,在矩形纸片中,将沿翻折,使点落在上的点处,为折痕,连接;再将沿翻折,使点恰好落在上的点处,为折痕,连接并延长交于点,若,,则线段的长等于_____.17.如果△ABC∽△DEF,且△ABC的三边长分别为4、5、6,△DEF的最短边长为12,那么△DEF的周长等于_____.18.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________三、解答题(共66分)19.(10分)如图,,射线于点,是线段上一点,是射线上一点,且满足.(1)若,求的长;(2)当的长为何值时,的长最大,并求出这个最大值.20.(6分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.21.(6分)抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),与y轴交于点C.点D(xD,yD)为抛物线上一个动点,其中1<xD<1.连接AC,BC,DB,DC.(1)求该抛物线的解析式;(2)当△BCD的面积等于△AOC的面积的2倍时,求点D的坐标;(1)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.22.(8分)如图,胡同左右两侧是竖直的墙,一架米长的梯子斜靠在右侧墙壁上,测得梯子与地面的夹角为,此时梯子顶端恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达处,此时测得梯子与地面的夹角为,问:胡同左侧的通道拓宽了多少米(保留根号)?23.(8分)如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30cm,50cm,请你帮助杨阳计算出该平行四边形的面积.24.(8分)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.25.(10分)国家计划2035年前实施新能源汽车,某公司为加快新旧动能转换,提高公司经济效益,决定对近期研发出的一种新型能源产品进行降价促销.根据市场调查:这种新型能源产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个新型能源产品的成本为100元.问:(1)设该产品的销售单价为元,每天的利润为元.则_________(用含的代数式表示)(2)这种新型能源产品降价后的销售单价为多少元时,公司每天可获利32000元?26.(10分)已知关于x的方程x2﹣(m+2)x+2m=1.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、D【解题分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.【题目详解】由图可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D.【题目点拨】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.3、B【分析】由题意可得△ODE为等腰直角三角形,可得出扇形圆心角为45°,再根据扇形和三角形的面积公式即可得到结论.【题目详解】解:∵DE⊥OB,OE=DE=2,

∴△ODE为等腰直角三角形,∴∠O=45°,OD=OE=2.∴S阴影部分=S扇形BOD-S△OED=

故答案为:B.【题目点拨】本题考查的是扇形面积计算、等腰直角三角形的性质,利用转化法求阴影部分的面积是解题的关键.4、B【解题分析】试题分析:根据中心对称图形的概念,A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.考点:中心对称图形5、A【分析】设道路的宽度为x米.把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程.【题目详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故选:A.【题目点拨】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键.6、D【分析】根据反比例函数图象上的点的坐标特征,将P(﹣1,1)代入反比例函数的解析式(k≠0),然后解关于k的方程,即可求得k=-1.【题目详解】解:将P(﹣1,1)代入反比例函数的解析式(k≠0),解得:k=-1.故选D.【题目点拨】本题考查待定系数法求反比例函数解析式,掌握求解步骤正确计算是本题的解题关键.7、C【解题分析】试题分析:设这个小组有人,故选C.考点:一元二次方程的应用.8、A【分析】设原矩形的长为2a,宽为b,对折后所得的矩形与原矩形相似,则【题目详解】设原矩形的长为2a,宽为b,

则对折后的矩形的长为b,宽为a,

∵对折后所得的矩形与原矩形相似,

∴,

∴大矩形与小矩形的相似比是:1;

故选A.【题目点拨】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.9、B【分析】由平行可得=,再由条件可求得=,代入可求得BC.【题目详解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故选:B.【题目点拨】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段成比例是解题的关键.10、A【分析】首先利用a和b表示出AC和CQ的长,则四边形ACQE的面积即可利用a、b表示,然后根据函数的性质判断.【题目详解】解:AC=a−2,CQ=b,则S四边形ACQE=AC•CQ=(a−2)b=ab−2b.∵、在函数的图象上,∴ab=k=10(常数).∴S四边形ACQE=AC•CQ=10−2b,∵当a>2时,b随a的增大而减小,∴S四边形ACQE=10−2b随a的增大而增大.故选:A.【题目点拨】本题考查了反比例函数的性质以及矩形的面积的计算,利用b表示出四边形ACQE的面积是关键.二、填空题(每小题3分,共24分)11、【解题分析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.12、π.【题目详解】解:如图连接OE、OF.∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长=.故答案为π.考点:切线的性质;平行四边形的性质;弧长的计算.13、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【题目详解】∵A(−1,a)在反比例函数y=上,∴a=2,∴A(−1,2),∵点B在直线y=kx−1上,∴B(0,−1),∴AB=,∵四边形ABCD是正方形,∴BC=AB=,设B(m,0),∴,∴m=−3(舍)或m=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),将点D的坐标代入反比例函数y=中,∴k=6故答案为:6.【题目点拨】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.14、a≤且a≠1.【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【题目详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.15、相交【分析】先根据题意判断出直线与圆的位置关系即可得出结论.【题目详解】∵⊙O的半径为6cm,圆心O到直线l的距离为5cm,6cm>5cm,∴直线l与⊙O相交,故答案为:相交.【题目点拨】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l的距离为d,当d<r时,直线与圆相交是解答此题的关键.16、.【分析】根据折叠可得是正方形,,,,可求出三角形的三边为3,4,5,在中,由勾股定理可以求出三边的长,通过作辅助线,可证∽,三边占比为3:4:5,设未知数,通过,列方程求出待定系数,进而求出的长,然后求的长.【题目详解】过点作,,垂足为、,由折叠得:是正方形,,,,,∴,在中,,∴,在中,设,则,由勾股定理得,,解得:,∵,,∴∽,∴,设,则,,∴,,解得:,∴,∴,故答案为.【题目点拨】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.17、1【分析】根据题意求出△ABC的周长,根据相似三角形的性质列式计算即可.【题目详解】解:设△DEF的周长别为x,△ABC的三边长分别为4、5、6,∴△ABC的周长=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案为1.【题目点拨】本题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.18、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【题目详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【题目点拨】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.三、解答题(共66分)19、(1);(2)当时,的最大值为1.【分析】(1)先利用互余的关系求得,再证明,根据对应边成比例即可求得答案;(2)设为,则,根据,求得,利用二次函数的最值问题即可解决.【题目详解】(1)如图,∵,∴,∴,∵,∴,∴,可知,∴,∵,∴,∴,∴;(2)设为,则,∵(1)可得,∴,∴,∴,∴当时,的最大值为1.【题目点拨】本题主要考查了相似三角形的判定和性质以及二次函数等综合知识,根据线段比例来求线段的长是本题解题的基本思路.20、(2)y=-x2+2x+2.(2)P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).【分析】(2)可设交点式,用待定系数法求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(2)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、②AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解【题目详解】(2)∵A(-2,0)、B(2,0)经过抛物线y=ax2+bx+c,∴可设抛物线为y=a(x+2)(x-2).又∵C(0,2)经过抛物线,∴代入,得2=a(0+2)(0-2),即a=-2.∴抛物线的解析式为y=-(x+2)(x-2),即y=-x2+2x+2.(2)连接BC,直线BC与直线l的交点为P.则此时的点P,使△PAC的周长最小.设直线BC的解析式为y=kx+b,将B(2,0),C(0,2)代入,得:,解得:.∴直线BC的函数关系式y=-x+2.当x-2时,y=2,即P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).∵抛物线的对称轴为:x=2,∴设M(2,m).∵A(-2,0)、C(0,2),∴MA2=m2+4,MC2=m2-6m+20,AC2=20.①若MA=MC,则MA2=MC2,得:m2+4=m2-6m+20,得:m=2.②若MA=AC,则MA2=AC2,得:m2+4=20,得:m=±.③若MC=AC,则MC2=AC2,得:m2-6m+20=20,得:m=0,m=6,当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的M点,且坐标为(2,),(2,-),(2,2),(2,0).21、(1)抛物线的解析式为y=﹣x2+2x+1;(2)点D坐标(2,1);(1)M坐标(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系数法求函数解析式;(2)根据解析式先求出△AOC的面积,设点D(xD,yD),由直线BC的解析式表示点E的坐标,求出DE的长,再由△BCD的面积等于△AOC的面积的2倍,列出关于xD的方程得到点D的坐标;(1)设点M(m,0),点N(x,y),分两种情况讨论:当BD为边时或BD为对角线时,列中点关系式解答.【题目详解】解:(1)∵抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),∴,解得:∴抛物线的解析式为y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴,与直线BC交于点E,∵抛物线y=﹣x2+2x+1,与y轴交于点C,∴点C(0,1),∴OC=1,∴S△AOC=×1×1=,∵点B(1,0),点C(0,1)∴直线BC解析式为y=﹣x+1,∵点D(xD,yD),∴点E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面积等于△AOC的面积的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴点D坐标(2,1);(1)设点M(m,0),点N(x,y)当BD为边,四边形BDNM是平行四边形,∴BN与DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴,∴m=1,当BD为边,四边形BDMN是平行四边形,∴BM与DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,当BD为对角线,∴BD中点坐标(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴m=5,综上所述点M坐标(1,0)或(,0)或(﹣,0)或(5,0).【题目点拨】此题是二次函数的综合题,考查待定系数法求函数解析式,动线、动图形与抛物线的结合问题,在(1)使以点B,D,M,N为顶点的四边形是平行四边形时,要分情况讨论:当BD为边时或BD为对角线时,不要有遗漏,平行四边形的性质:对角线互相平分,列中点坐标等式求得点M的坐标.22、胡同左侧的通道拓宽了米.【分析】根据题意,得到△BCE为等腰直角三角形,得到BE=CE,再由解直角三角形,求出DE的长度,然后得到CD的长度.【题目详解】解:如图,∵,∴△BCE为等腰直角三角形,∴,∵,∴,∴;∴胡同左侧的通道拓宽了米.【题目点拨】本题考查了解直角三角形的应用,解题的关键是掌握题意,正确的进行解直角三角形.23、1200cm2【解题分析】先利用勾股定理计算AC,然后根据平行四边形的面积求解.【题目详解】解如图,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以该平行四边形的面积=30×40=1200(cm2).【题目点拨】本题主要考查了利用勾股定理求直角三角形边长和求平行四边形面积,熟练掌握方法即可求解.24、(1)y=x2﹣2x﹣3;(2)CP的长为3﹣或3﹣3;(3)a的值为1﹣或2+.【解题分析】(1)先根据题意得出点B的坐标,再利用待定系数法求解可得;

(2)分点P在点C上方和下方两种情况,先求出∠OBP的度数,再利用三角函数求出OP的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论