2024届山东省青岛43中九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届山东省青岛43中九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届山东省青岛43中九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届山东省青岛43中九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届山东省青岛43中九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛43中九年级数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,1,8,1.这5个数据的中位数是()A.6 B.7 C.8 D.12.如图,一边靠墙(墙有足够长),其它三边用12m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是()A.16m2 B.12m2 C.18m2 D.以上都不对3.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2 B.4 C.6 D.84.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.5.下列说法:①三点确定一个圆;②任何三角形有且只有一个内切圆;③相等的圆心角所对的弧相等;④正多边形一定是中心对称图形,其中真命题有()A.1个 B.2个 C.3个 D.4个6.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽次也可能没有抽到一等奖C.抽次奖必有一次抽到一等奖D.抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个8.下列事件中,是随机事件的是()A.明天太阳从东方升起 B.任意画一个三角形,其内角和为360°C.经过有交通信号的路口,遇到红灯 D.通常加热到100℃时,水沸腾9.的绝对值是A. B. C.2018 D.10.若抛物线与坐标轴有一个交点,则的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.12.如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′1,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为____.13.在相似的两个三角形中,已知其中一个三角形三边的长是3,4,5,另一个三角形有一边长是2,则另一个三角形的周长是.14.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________米.15.已知:∠BAC.(1)如图,在平面内任取一点O;(2)以点O为圆心,OA为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作线段DE的垂线交⊙O于点P;(4)连接AP,DP和PE.根据以上作图过程及所作图形,下列四个结论中:①△ADE是⊙O的内接三角形;②;③DE=2PE;④AP平分∠BAC.所有正确结论的序号是______________.16.如图,边长为2的正方形,以为直径作,与相切于点,与交于点,则的面积为__________.17.如果二次函数的图象如图所示,那么____0.(填“>”,“=”,或“<”).18.如图,在△ABC中,∠ABC=90°,AB=6,BC=4,P是△ABC的重心,连结BP,CP,则△BPC的面积为_____.三、解答题(共66分)19.(10分)已知关于的一元二次方程(是常量),它有两个不相等的实数根.(1)求的取值范围;(2)请你从或或三者中,选取一个符合(1)中条件的的数值代入原方程,求解出这个一元二次方程的根.20.(6分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)计算并完成上述表格;(2)请估计当n很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1)(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?21.(6分)如图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点,另一边交的延长线于点.(1)求证:;(2)如图2,将三角板绕点旋转,当时,连接交于点求证:;(3)如图3,将“正方形”改为“矩形”,且将三角板的直角顶点放于对角线(不与端点重合)上,使三角板的一边经过点,另一边交于点,若,求的值.22.(8分)经过点A(4,1)的直线与反比例函数y=的图象交于点A、C,AB⊥y轴,垂足为B,连接BC.(1)求反比例函数的表达式;(2)若△ABC的面积为6,求直线AC的函数表达式;(3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠PAC=90°,则点P的坐标是.23.(8分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?24.(8分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.25.(10分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.(1)求证:平分;(2)若,求圆弧的半径;(3)在的情况下,若,求阴影部分的面积(结果保留和根号)26.(10分)已知关于x的一元二次方程mx2+2mx+m﹣4=0;(1)若该方程没有实数根,求m的取值范围.(2)怎样平移函数y=mx2+2mx+m﹣4的图象,可以得到函数y=mx2的图象?

参考答案一、选择题(每小题3分,共30分)1、C【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此求解即可.【题目详解】将这组数据重新排序为6,7,8,1,1,∴中位数是按从小到大排列后第3个数为:8.故选C.2、C【分析】设AB边为x,则BC边为(12-2x),根据矩形的面积可列二次函数,再求出最大值即可.【题目详解】设AB边为x,则BC边为(12-2x),则矩形ABCD的面积y=x(12-2x)=-2(x-3)2+18,∴当x=3时,面积最大为18,选C.【题目点拨】此题主要考察二次函数的应用,正确列出函数是解题的关键.3、D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【题目详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【题目点拨】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.4、D【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【题目详解】过点A向BC作AH⊥BC于点H,所以根据相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选D.【题目点拨】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.5、A【分析】根据圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,依次分析可得出正确的命题,即可得出答案.【题目详解】①不共线的三点确定一个圆,错误,假命题;②任何三角形有且只有一个内切圆,正确,真命题;③在同一个圆中,圆心角相等所对的弧也相等,错误,假命题;④正五边形、正三角形都不是中心对称图形,错误,假命题;故答案为A.【题目点拨】本题考查了圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,解题时记牢性质和判定方法是关键.6、B【解题分析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【题目详解】A.“抽到一等奖的概率为”,抽一次也可能抽到一等奖,故错误;B.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故正确;C.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故错误;D.“抽到一等奖的概率为”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【题目点拨】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.7、B【解题分析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.8、C【分析】根据事件发生的可能性判断,一定条件下,一定发生的事件称为必然事件,一定不发生的事件为不可能事件,可能发生可能不发生的事件为随机事件.【题目详解】解:A选项是明天太阳从东方升起必然事件,不符合题意;因为三角形的内角和为,B选项三角形内角和是360°是不可能事件,不符合题意;C选项遇到红灯是可能发生的,是随机事件,符合题意;D选项通常加热到100℃时,水沸腾是必然事件,不符合题意.故选:C【题目点拨】本题考查了事件的可能性,熟练掌握必然事件、不可能事件、可能事件的概念是解题的关键.9、C【解题分析】根据数a的绝对值是指数轴表示数a的点到原点的距离进行解答即可得.【题目详解】数轴上表示数-2018的点到原点的距离是2018,所以-2018的绝对值是2018,故选C.【题目点拨】本题考查了绝对值的意义,熟练掌握绝对值的定义是解题的关键.10、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【题目详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,

抛物线开口向上,m2≥0,

∴抛物线与x轴没有交点,与y轴有1个交点,

∴(2m-1)2-4m2<0

解得故选:A.【题目点拨】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x轴交点的关系.二、填空题(每小题3分,共24分)11、-1<x<3【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【题目详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【题目点拨】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.12、π.【分析】连接AC、AC′,作BM⊥AC于M,由菱形的性质得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性质得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧长公式即可得出结果.【题目详解】解:连接AC、AC′,作BM⊥AC于M,如图所示:∵四边形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴点C经过的路线长==π故答案为:π【题目点拨】本题考查了菱形的性质、含30°角的直角三角形的性质、等腰三角形的性质、勾股定理、弧长公式;熟练掌握菱形的性质,由勾股定理和等腰三角形的性质求出AC的长是解决问题的关键.13、8或6或【分析】由一个三角形三边的长是3,4,5,可求得其周长,又由相似三角形周长的比等于相似比,分别从2与3对应,2与4对应,2与5对应,去分析求解即可求得答案.【题目详解】解:∵一个三角形三边的长是3,4,5,

∴此三角形的周长为:3+4+5=12,

∵在相似的两个三角形中,另一个三角形有一边长是2,

∴若2与3对应,则另一个三角形的周长是:;若2与4对应,则另一个三角形的周长是:;若2与5对应,则另一个三角形的周长是:.【题目点拨】本题考查相似三角形性质.熟知相似三角形性质,解答时由于对应边到比发生变化,会得到不同到结果,本题难度不大,但易漏求,属于基础题.14、①;5.95.【解题分析】试题解析:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考点:中心投影.15、①④【分析】①按照圆的内接三角形的定义判断即可,三顶点都在一个圆周上的三角形,叫做这个圆周的内接三角形;②利用垂径定理得到弧长之间的关系即可;③设OP与DE交于点M,利用垂径定理可得DE⊥OP,DE=2ME,再利用直角三角形中斜边长大于直角边,找到PE与与ME的关系,进一步可以得到DE与PE的关系;④根据,即可得到∠DAP=∠PAE,则AP平分∠BAC.【题目详解】解:①点A、D、E三点均在⊙O上,所以△ADE是⊙O的内接三角形,此项正确;②∵DE⊥DE交⊙O于点P∴并不能证明与、关系,∴不正确;③设OP与DE交于点M∵DE⊥DE交⊙O于点P∴DE⊥OP,ME=DE(垂径定理)∴△PME是直角三角形∴ME<PE∴<PE∴DE<2PE故此项错误.④∵(已证)∴∠DAP=∠PAE(同弧所对的圆周角相等)∴AP平分∠BAC.故此项正确.故正确的序号为:①④【题目点拨】本题考查了圆中内接三角形定义、垂径定理与圆周角定理的应用,熟练掌握定理是解决此题的关键.16、【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【题目详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△CDF中,由勾股定理得:DF2=CF2-CD2,即(2-x)2=(2+x)2-22解得:x=,则DF=∴的面积为=故答案为.【题目点拨】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.17、<【分析】首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与Y轴的交点的纵坐标即可判断c的正负,代入即可判断abc的正负.【题目详解】解:∵图象开口方向向上,∴a>0.∵图象的对称轴在x轴的负半轴上,∴.

∵a>0,∴b>0.∵图象与Y轴交点在y轴的负半轴上,

∴c<0.∴abc<0.故答案为<.【题目点拨】本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合思想.18、1【分析】△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,即可求解.【题目详解】解:△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,(证明见备注)△BEC的面积=S=6,BP=BE,则△BPC的面积=△BEC的面积=1,故答案为:1.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=CG证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=AF,又∵AF=CF,∴HF=CF,∴HF:CF=,∵EH∥BF,∴EG:CG=HF:CF=,∴EG=CG.【题目点拨】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.三、解答题(共66分)19、(1);(2),【分析】(1)由一元二次方程有两个不相等的实数根,根据根的判别式,建立关于k的不等式,即可求出k的取值范围;(2)在k的取值范围内确定一个k的值,代入求得方程的解即可.【题目详解】解:(1)由题意,得整理,得,所以的取值范围是;(2)由(1),知,所以在或或三者中取,将代入原方程得:,化简得:,因式分解得:,解得两根为,.【题目点拨】本题考查了一元二次方程根的判别式及因式分解法解一元二次方程的知识,题目难度一般,需要注意计算的准确度和正确确定k的值.20、(1)472,0.596;(2)0.6,0.6;(3)144°.【解题分析】试题分析:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率,(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率,(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P,(3)利用频率估计出的概率是近似值.试题解析:(1)如下表:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298472604落在“可乐”区域的频率0.60.610.60.5960.590.604(2)0.6;0.6(3)由(2)可知落在“车模”区域的概率约是0.4,从而得到圆心角的度数约是360°×0.4=144°.21、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据旋转全等模型利用正方形的性质,由可证明,从而可得结论;(2)根据正方形性质可知,结合已知可得;再由(1)可知是等腰直角三角形可得,从而证明,由相似三角形性质即可得出结论;(3)首先过点作,垂足为,交AD于M点,由有两角对应相等的三角形相似,证得,根据相似三角形的对应边成比例,再由平行可得,由此即可求得答案.【题目详解】(1)证明:∵在正方形ABCD中,∴,又∵,,在和中,,∴(ASA),;(2)证明:∵四边形ABCD是正方形,∴,又∵,∴,由(1)可知,∴,∴,由(1)可知是等腰直角三角形,∴,∴,∴,∴,由(1)可知,∴.(3)解:如图,过点作,垂足为,交AD于M点,∵四边形ABCD为矩形,∴,,∴四边形ABNM是矩形,∴,,∴又∵,∴,∴,∴,,又∵,∴,又∵,∴,,∵.【题目点拨】本题主要考查了相似三角形性质和判定;涉及了正方形,矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意旋转全等模型和一线三垂直模型的应用.22、(1)反比例函数的表达式为y=(2)直线AC的函数表达式为y=x﹣1;(3)(,8).【分析】(1)将点A坐标代入反比例函数表达式中,即可得出结论;

(2)先求出AB,设出点C的纵坐标,利用△ABC的面积为6,求出点C纵坐标,再代入反比例函数表达式中,求出点C坐标,最后用待定系数法求出直线AC的解析式;

(3)先求出直线AP的解析式,再和反比例函数解析式联立求解即可得出结论.【题目详解】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴k=4×1=4,∴反比例函数的表达式为y=;(2)设点C的纵坐标为m,∵AB⊥y轴,A(4,1),∴AB=4,∵△ABC的面积为6,∴AB×(1﹣m)=6,∴m=﹣2,由(1)知,反比例函数的表达式为y=,∴点C的纵坐标为:﹣2,∴点C(﹣2,﹣2),设直线AC的解析式为y=k'x+b,将点A(4,1),C(﹣2,﹣2)代入y=k'x+b中,,∴,∴直线AC的函数表达式为y=x﹣1;(3)由(2)知直线AC的函数表达式为y=x﹣1,∵∠PAC=90°,∴AC⊥AP,∴设直线AP的解析式为y=﹣2x+b',将A(4,1)代入y=﹣2x+b'中,﹣8+b'=1,∴b'=9,∴直线AP的解析式为y=﹣2x+9①,由(1)知,反比例函数的表达式为y=②,联立①②解得,(舍)或,∴点P的坐标为(,8),故答案为:(,8).【题目点拨】考查了待定系数法,三角形的面积公式,方程组的解法,用方程或方程组的思想解决问题是解本题的关键.23、销售单价为35元时,才能在半月内获得最大利润.【解题分析】本题考查了二次函数的应用.设销售单价为x元,销售利润为y元.求得方程,根据最值公式求得.解:设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000当x==35时,才能在半月内获得最大利润24、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),当x=3时,S有最大值;(3)(0,﹣)【分析】(1)设出解析式,由待定系数法可得出结论;(2)点E在抛物线上,用x去表示y,结合三角形面积公式即可得出三角形OEB的面积S与x之间的函数关系式,再由E点在x轴下方,得出1<x<1,将三角形OEB的面积S与x之间的函数关系式配方,即可得出最值;(3)找出D点关于y轴对称的对称点D′,结合三角形内两边之和大于第三边,即可确定当MD+MB最小时M点的坐标.【题目详解】解:(1)设抛物线解析式为y=ax2+bx+c,则,解得:.故抛物线解析式为y=x2﹣4x+.(2)过点E作EF⊥x轴,垂足为点F,如图1所示.E点坐标为(x,x2﹣4x+),F点的坐标为(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵点E(x,y)是抛物线上一动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论