浙江省杭州市滨江区职业高中高三数学文下学期摸底试题含解析_第1页
浙江省杭州市滨江区职业高中高三数学文下学期摸底试题含解析_第2页
浙江省杭州市滨江区职业高中高三数学文下学期摸底试题含解析_第3页
浙江省杭州市滨江区职业高中高三数学文下学期摸底试题含解析_第4页
浙江省杭州市滨江区职业高中高三数学文下学期摸底试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市滨江区职业高中高三数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,则“”是“是偶函数”的(

)A.充分不必要条件

B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:A2.设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β= B.3α+β= C.2α﹣β= D.2α+β=参考答案:C【考点】三角函数的化简求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.3.把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在三棱锥A﹣BCD中,BD⊥CD,AB⊥DB,AC⊥DC,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S1,S2,S3,S4,设面积为S2的三角形所在的平面为α,则面积为S4的三角形在平面α上的射影的面积是()A.2 B. C.10 D.30参考答案:A【考点】平行投影及平行投影作图法.【分析】由题意,面积为S4的三角形在平面α上的射影为△OAC,即可得出结论.【解答】解:如图所示,面积为S4的三角形在平面α上的射影为△OAC,面积为=2,故选A.【点评】本题考查射影的概念,考查三角形面积的计算,比较基础.4.已知符号函数,那么的大致图象是

)参考答案:D略5.

的展开式中的常数项为(

)A.-60

B.-50

C.50

D.60参考答案:D展开式的通项为,令,解得.故常数项为6.已知均为锐角,则(

)A.

B.

C.

D.参考答案:C【知识点】两角和与差的三角函数【试题解析】由题知:

所以

所以

故答案为:C【答案】【解析】7.已知双曲线的中心为原点,是的焦点,过F的直线与相交于A,B两点,且AB的中点为,则的方程式为

A.

B.

C.

D.参考答案:C略8.下列命题中正确的是

A.平行于同一平面的两条直线必平行

B.垂直于同一平面的两个平面必平行

C.一条直线至多与两条异面直线中的一条平行

D.一条直线至多与两条相交直线中的一条垂直参考答案:C9.右图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为8的矩形,则该几何体的表面积是(

)A.20+8 B.24+8C.8 D.16参考答案:A【知识点】空间几何体的三视图和直观图G2此几何体是一个三棱柱,且其高为,由于其底面是一个等腰直角三角形,直角边长为2,所以其面积为×2×2=2,又此三棱柱的高为4,故其侧面积为,(2+2+2)×4=16+8,表面积为:2×2+16+8=20+8.【思路点拨】由三视图及题设条件知,此几何体为一个三棱柱,底面是等腰直角三角形,且其高为,故先求出底面积,求解其表面积即可.10.已知Z=(i为虚数单位),则Z的共轭复数在复平面内对应的点位于()A.第一象限

B.第二象限

C.第三象限

D.第四象限参考答案:D因为Z===1-+,Z的共轭复数为1--,在第四象限。二、填空题:本大题共7小题,每小题4分,共28分11.已知是坐标原点,点,若为平面区域上的一个动点,则的最小值是

.

参考答案:1略12.数列,如果是一个等差数列,则

参考答案:313.(坐标系与参数方程选做题)若直线(t为参数)与直线垂直,则常数=

.参考答案:略14.若数列{an}是正项数列,且,则=.参考答案:2n2+6n【考点】8E:数列的求和.【分析】由已知数列递推式求出首项,并得到当n≥2时,.与原递推式作差可得数列通项公式,进一步得到,再由等差数列的前n项和求解.【解答】解:由,令n=1,得,∴a1=16.当n≥2时,.与已知递推式作差,得.∴,当n=1时,a1适合上式,∴,则.∴=4(1+2+…+n)+4n=4×=2n2+6n.故答案为:2n2+6n.15.等比数列中,若,则参考答案:略16.已知,当取最小值时,实数的值是

.参考答案:试题分析:,当且仅当,即时取等号考点:基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.17.已知,则

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(13分)已知函数f(x)=2cosxsin(x+)﹣.(Ⅰ)求函数f(x)的最小正周期和对称中心;(Ⅱ)求函数f(x)在区间[,π]上的取值范围.参考答案:【考点】三角函数的周期性及其求法;正弦函数的单调性.【分析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x+),利用三角函数周期公式可求T,令2x+=kπ,k∈Z,解得函数的对称中心.(Ⅱ)由范围x∈[,π],利用正弦函数的图象和性质即可得解函数的取值范围.【解答】(本题满分为13分)解:(Ⅰ)∵f(x)=2cosxsin(x+)﹣=2cosx(sinxcos+cosxsin)﹣=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),…5分∴T==π,…6分∴令2x+=kπ,k∈Z,解得:x=﹣,k∈Z,即函数的对称中心为:(﹣,0),k∈Z…7分(Ⅱ)∵x∈[,π],∴f(x)在区间[,]单调递增,在区间[,π]单调递减,∵f()=sinπ=0,f()=sin=﹣1,f(π)=sin=,∴函数f(x)在区间[,π]上的取值范围为[﹣1,]…13分【点评】本题值域考查了三角函数恒等变换的应用,三角函数周期公式,正弦函数的图象和性质的应用,考查了转化思想和数形结合思想,属于基础题.19.如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平面ABCD内的两点,EE′和FF′都与平面ABCD垂直.(1)证明:直线E′F′垂直且平分线段AD;(2)若∠EAD=∠EAB=60°,EF=2,求多面体ABCDEF的体积.参考答案:(1)∵EA=ED且EE′⊥平面ABCD,∴E′D=E′A,∴点E′在线段AD的垂直平分线上.同理,点F′在线段BC的垂直平分线上.又四边形ABCD是正方形,∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上.∴直线E′F′垂直且平分线段AD.(2)

如图,连结EB、EC,由题意知多面体ABCDEF可分割成正四棱锥E-ABCD和正四面体E-BCF两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME=,∴EE′=.∴VE-ABCD=·S正方形ABCD·EE′=×22×=.又VE-BCF=VC-BEF=VC-BEA=VE-ABC=S△ABC·EE′=××22×=,∴多面体ABCDEF的体积为VE-ABCD+VE-BCF=2.20.选修4-5:不等式选讲已知函数.(1)求不等式的解集M;(2)若,,证明:.参考答案:解:(1)由得,∴(2)∵,,∴,,∴,,∴,,∴,,∴.21.已知定义在实数集上的奇函数有最小正周期2,且当时,

(Ⅰ)求函数在上的解析式;

(Ⅱ)判断在上的单调性;(Ⅲ)当取何值时,方程在上有实数解?参考答案:(Ⅰ)∵f(x)是x∈R上的奇函数,∴f(0)=0.设x∈(-1,0),则-x∈(0,1),

(Ⅱ)设,

∵,∴,∴

∴f(x)在(0,1)上为减函数.

(Ⅲ)∵f(x)在(0,1)上为减函数,∴

方程上有实数解.22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为.(1)求直线l的普通方程及曲线C的直角坐标方程;(2)设点,直线l与曲线C相交于两点A,B,求的值.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论