




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年江苏省南通市海门市中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。一、选择题1、3的绝对值是()A.3 B.-3C. D. 2、江苏省南通市总面积约有8544平方公里,将数8544用科学记数法表示为()A.854.4×10 B.85.44×102 C.8.544×103 D.0.8544×104 3、如图,已知数轴上的点A,O,B,C,D分别表示数-2,0,1,2,3,则表示数的点P应落在线段()A.AO上 B.OB上 C.BC上 D.CD上 4、一个不透明的盒子中装有9个除颜色外其他完全相同的乒乓球,其中3个是黄球,6个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. B.C. D. 5、下列运算正确的是()A.3x2+4x2=7x4 B.2x3•3x3=6x3 C.x6÷x3=x2 D.(x2)4=x8 6、如图,将一副三角板叠放在一起,使直角顶点重合于点O,∠A=60°,∠D=45°,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85° B.80° C.75° D.65° 7、某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是()A.1000(1-x%)2=640 B.1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=360 8、如图,小东在同一平面上按照如下步骤进行尺规作图:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧交于点C;(2)以C为圆心,以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.则下列说法中不正确的是()A.∠ABD=90°B.sin2A+cos2D=1C.DB=ABD.点C是△ABD的外心 9、甲、乙两车都从A地出发,都匀速行驶至B地,先到达的车停在B地休息.在整个行驶过程中,甲、乙两车离开A地的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.根据图中提供的信息,有下列说法:①A,B两地相距300千米;②甲车比乙车早出发1小时,且晚1小时到达B地;③乙车只用了1.5小时就追上甲车;④当甲、乙两车相距40千米时,t=,,或小时.其中正确的说法有()A.1个 B.2个 C.3个 D.4个 10、在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,),C(-2,0).将△OAB绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA′与直线BB′相交于点P,则线段CP长的最小值是()A. B.C.2 D. 二、填空题1、如果分式有意义,那么x的取值范围是______.2、分解因式:a3-4ab2=______.3、如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是______cm2.4、请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为______.5、设α,β是方程x2-x-2019=0的两个实数根,则α2+αβ+β2的值为______.6、如图,已知小华、小强的身高分别为1.8m,1.6m,小华、小强之间的水平距离为15.6m,小华、小强在同一盏路灯下的影长分别为4m,3.2m,则这盏路灯的高度为______m.7、如图,已知半径为4cm的扇形OAB,其圆心角∠AOB=45°,将它沿射线OA方向作无滑动滚动,当第一次滚动到扇形O′A′B′的位置时,点O运动到点O′所经过的路径长为______cm.8、在平面直角坐标系xOy中,抛物线y=ax2+4ax+4a+1(a<0)交x轴于A,B两点,若此抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)有且只有8个整点(横、纵坐标都是整数的点),则a的取值范围是______.三、解答题1、(1)计算:;(2)先化简,再求值:,其中3x2+3x-2=0.______2、解不等式组:,并把它的解集在数轴上表示出来.______3、如图,▱ABCD中,点E是BC边的一点,延长AD至点F,使∠DFC=∠DEC.求证:四边形DECF是平行四边形.______4、阅读对每个人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某初中倡导学生课外读书,下面的表格是该校学生去年阅读课外书籍情况统计表,如图是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为612人,请你根据图表中提供的信息,解答下列问题:图书种类频数频率科普常识2520b名人传记2448c中外名著a0.25其他4320.06(1)求该校初中三个年级学生的总人数;(2)求表中a,b,c的值;(3)问该校学生去年读课外书籍的平均本数是否超过4.5?请说明理由.______5、如图,甲船在港口P的南偏西60°方向,距港口80海里的A处,沿AP方向以每小时18海里的速度匀速驶向港口P.乙船从港口P出发,沿南偏东45°方向匀速驶离港口P,已知两船同时出发,经过2小时乙船恰好在甲船的正东方向.求乙船的行驶速度.(结果保留根号)______6、在平面直角坐标系xOy中,直线y=-2x与双曲线y=的一个交点为.(1)求k的值;(2)将直线y=-2x向下平移b(b>0)个单位长度时,与x轴,y轴分别交于点A,点B,与双曲线y=的其中一个交点记为Q.若BQ=2AB,求b的值.______7、如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)若AB=10,BC=12,求△DFC的面积;(2)若tan∠C=2,AE=6,求BG的长.______8、已知关于x的一元二次方程mx2-(2m+1)x+2=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2-(2m+1)x+2与x轴两个交点的横坐标均为整数,且m为负整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(n,y1),Q(n+1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数n的取值范围.______9、如图,边长为1的正方形ABCD中,点E、F分别在边CD、AD上,连接BE、BF、EF,且有AF+CE=EF.(1)求(AF+1)(CE+1)的值;(2)探究∠EBF的度数是否为定值,并说明理由;(3)将△EDF沿EF翻折,若点D的对应点恰好落在BF上,求EF的长.______10、定义:在平面直角坐标系xOy中,对于点P和图形M,如果线段OP与图形M有公共点时,就称点P为关于图形M的“亲近点”.已知平面直角坐标系xOy中,点A(1,),B(5,),连接AB.(1)在P1(1,2),P2(3,2),P3(5,2)这三个点中,关于线段AB的“亲近点”是______;(2)若线段CD上的所有点都是关于线段AB的“亲近点”,点C(t,)、D(t+6,),求实数t的取值范围;(3)若⊙A与y轴相切,直线l:y=过点B,点E是直线l上的动点,⊙E半径为2,当⊙E上所有点都是关于⊙A的“亲近点”时,直接写出点E横坐标n的取值范围.______
2019年江苏省南通市海门市中考数学一模试卷参考答案一、选择题第1题参考答案:A解:|3|=3.故选:A.直接根据绝对值的意义求解.本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.---------------------------------------------------------------------第2题参考答案:C解:将数8544用科学记数法表示为8.544×103,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.---------------------------------------------------------------------第3题参考答案:C解:∵1<2<4,∴1<<2,故选:C.估算出的范围,即可解答.本题考查了估算无理数的大小,利用被开方数越大相应的算术平方根越大得出的范围是解题关键.---------------------------------------------------------------------第4题参考答案:A解:∵3个是黄球,6个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是:=.故选:A.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.---------------------------------------------------------------------第5题参考答案:D解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选:D.根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.---------------------------------------------------------------------第6题参考答案:C解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°-90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.---------------------------------------------------------------------第7题参考答案:A解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.---------------------------------------------------------------------第8题参考答案:B解:由作图可知:CA=CB=CD,∴∠ABD=90°,点C是△ABC外接圆的圆心,故A,D正确,∵AC=BC=AB,∴△ABC是等边三角形,∴∠A=60°,∠D=30°,∴BD=AB,故C正确,∴sin2A+cos2D=+≠1,故B错误,故选:B.根据直角三角形的判定方法,三角形的外接圆的性质,特殊角三角函数值,解直角三角形一一判断即可.本题考查作图-复杂作图,线段的垂直平分线的性质,三角形的外接圆与外心,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.---------------------------------------------------------------------第9题参考答案:D解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,,解得,∴y乙=100t-100,令y甲=y乙可得:60t=100t-100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确;令|y甲-y乙|=40,可得|60t-100t+100|=40,即|100-40t|=40,当100-40t=40时,可解得t=,当100-40t=-40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为t=,,或小时,t=,,或小时.故④正确.综上可知正确的有①②③④共四个.故选:D.观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为40,可求得t,可判断④,可得出答案.本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.---------------------------------------------------------------------第10题参考答案:B解:∵△OAB是直角三角形,点P在以AB为直径的圆上运动,∵A(2,0),B(0,),∴AB=4,AB的中点为(1,),∵C(-2,0),∴CP的最小值为2-2;故选:B.判断P点的运动轨迹,将CP的最小值转化为C点到圆心的距离减去半径;本题考查动点的轨迹,线段的最值;能够根据运动情况判断点的运动轨迹是圆是解题的关键.二、填空题---------------------------------------------------------------------第1题参考答案:x≠1解:由题意,得x-1≠0,解得x≠1,故答案为:x≠1.根据分母不为零分式有意义,可得答案.本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.---------------------------------------------------------------------第2题参考答案:a(a+2b)(a-2b)解:a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).故答案为:a(a+2b)(a-2b).观察原式a3-4ab2,找到公因式a,提出公因式后发现a2-4b2符合平方差公式的形式,再利用平方差公式继续分解因式.本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.---------------------------------------------------------------------第3题参考答案:6π解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故答案为:6π.根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.---------------------------------------------------------------------第4题参考答案:解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故答案为:.设诗句中谈到的鸦为x只,树为y棵,利用“三只栖一树,五只没去处,五只栖一树,闲了一棵树”分别得出方程:x=3y+5,x=5(y-1)进而求出即可.此题主要考查了由实际问题抽象出二元一次方程组,据题意列出等量关系式是完成本题的关键.---------------------------------------------------------------------第5题参考答案:2020解:∵α,β是方程x2-x-2019=0的两个实数根由韦达定理可得:α+β=1,αβ=-2019,而α2+αβ+β2=(α+β)2-αβ=1+2019=2020故答案为2020.根据韦达定理可以求出α+β=1,αβ=-2019,将α2+αβ+β2可化为(α+β)2-αβ,代入求值即可解答.本题考查的是一元二次方程根与系数的关系,利用韦达定理进行计算与转化是解决问题的关键.---------------------------------------------------------------------第6题参考答案:9.5解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴=,=,即,=,解得:AB=9.5m,故答案为:9.5.作出图形,得到相似三角形,利用相似三角形对应边的比相等列式计算即可求解.本题考查的是相似三角形的应用,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.---------------------------------------------------------------------第7题参考答案:5π解:∵扇形OAB的圆心角为45°,半径为4cm,∴AB弧长==π(cm),∴点O到点O′所经过的路径长=×2+π=5π(cm).故答案为:5π.点O到点O′所经过的路径长分三段,先以A为圆心,4为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,4为半径,圆心角为90度的弧长.根据弧长公式计算即可.本题考查了弧长公式、旋转的性质和圆的性质;理解点O到点O′所经过的路径长分三段,熟记弧长公式是解题的关键.---------------------------------------------------------------------第8题参考答案:-≤a<-解:∵y=ax2+4ax+4a+1=a(x+2)2+1,∴顶点坐标为(-2,1),令y=0,得x=-2±,设A(-2+,0),B(-2-,0),∵此抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)有且只有8个整点(横、纵坐标都是整数的点),且顶点坐标为(-2,1),∴-6<-2+≤-5,1≤-2-<2,解得:-≤a<-;故答案为:-≤a<-.根据y=ax2+4ax+4a+1(a<0)可求出顶点坐标和A、B的坐标,再根据题意结合图象列出关于a的不等式组,求解即可得出答案.本题主要考查了二次函数的综合应用,解题的关键是明确已知条件列出关于a的不等式.三、解答题---------------------------------------------------------------------第1题参考答案:解(1)原式=--1+3-+2×=-+=;(2)原式=•-=-===由3x2+3x-2=0.得x2+x=.∴原式==.(1)先分别计算负指数幂、零指数幂、绝对值,三角函数值,然后算加减法;(2)先化简,然后将3x2+3x-2=0变形为x2+x=,代入求值即可.本题考查了实数运算与分式的化简求值,熟练掌握实数运算公式与分式混合运算法则是解题的关键.---------------------------------------------------------------------第2题参考答案:解:∵解不等式①,得x<2,解不等式②,得x>-1,∴不等式组的解集是-1<x<2,在数轴上表示为:.先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.---------------------------------------------------------------------第3题参考答案:解:∵四边形ABCD是平行四边形∴AD∥BC∴∠ADE=∠DEC,且∠DFC=∠DEC∴∠ADE=∠DFC∴DE∥CF,且DF∥BC∴四边形DECF是平行四边形.由平行四边形的性质可得AD∥BC,可得∠ADE=∠DEC,可证DE∥CF,可得结论.本题考查平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键.---------------------------------------------------------------------第4题参考答案:解:(1)该校初中三个年级学生的总人数612÷(1-28%-38%)=1800(人);(2)样本容量为432÷0.06=7200,则a=7200×0.25=1800,b=2520÷7200=0.35,c=2448÷7200=0.34;(3)不超过,7200÷1800=4<4.5,∴该校学生去年读课外书籍的平均本数不超过4.5.(1)由八年级学生数及其所占百分比可得总人数;(2)先求出样本容量,再根据频率=频数÷样本容量计算可得;(3)根据平均数的定义计算即可判断.此题主要考查了频数分布直方图以及频率分布直方图和扇形统计图等知识,利用已知得出全校学生的总数是解题关键.---------------------------------------------------------------------第5题参考答案:解:设乙船的航行速度为每小时x海里,2小时后甲船在点B处,乙船在点C处,则PC=2x海里,过P作PD⊥BC于D,则BP=80-2×18=44(海里),在Rt△PDB中,∠PDB=90°,∠BPD=60°,∴PD=PB•cos60°=22(海里),在Rt△PDC中,∠PDC=90°,∠DPC=45°,∴PD=PC•cos45°=2x•=x,∴x=22,即x=11,答:乙船的航行速度约为每小时11海里.设乙船的航行速度为每小时x海里,2小时后甲船在点B处,乙船在点C处,则PC=2x海里,过P作PD⊥BC于D,求出BP,在Rt△BPD中求出PD,然后在Rt△PDC中表示出PD,继而建立方程可解出x的值.本题考查了解直角三角形的应用-方向角问题,解答本题的关键是构造直角三角形,能利用三角函数表示相关线段的长度,难度一般.---------------------------------------------------------------------第6题参考答案:解:(1)∵直线y=-2x与双曲线y=的一个交点为,∴m=-×(-2)=2,k=-m,∴k=-6;(2)∵直线y=-2x向下平移b(b>0)个单位长度,∴可设平移后得到的直线为:y=-2x-b,∵平移后得到的直线与x轴,y轴分别交于点A,点B,∴A(-,0),B(0,-b),∵BQ=2AB,∴①当Q在第二象限时,AB=AQ,即点A是线段BQ的中点,∴Q(-b,b),∵Q在双曲线y=-的图象上,∴-6=(-b)×b,解得:b=;②当Q在第四象限时,点B是线段AQ的三等分点,∴Q(b,-3b),∵Q在双曲线y=-的图象上,∴-6=(-3b)×b,解得:b=;∴b=或.(1)根据正比例函数和反比例函数图象上的点的坐标特征代入即可求出k的值;(2)设设平移后得到的直线为:y=-2x-b,得出A(-,0),B(0,-b),由BQ=2AB,可分类讨论判断出点Q的位置,从而用b表示出点Q,代入反比例函数解析式中即可求出b的值.本题主要考查了反比例函数与一次函数的交点问题,依据已知条件用b表示出点A、B、Q的坐标是解决本题的关键.---------------------------------------------------------------------第7题参考答案:解:(1)连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC=10,∴DF⊥AC,∵BD=CD=6,∵DF⊥AC,∴由射影定理得,CD2=CF•AC,∴62=10•CF,∴CF=3.6,∴DF==4.8,∴△DFC的面积=CF•DF=3.6×4.8=8.64;(2)连接BE,∵AB是⊙O的直径,∴BE⊥AC,∵DF⊥AC,tan∠C=2,∴BE∥DF,DF=2CF,∵BD=CD,∴CF=EF,∴BE=2DF,设CF=EF=x,则DF=2x,∴BE=4x,AB=AC=6+2x,∴AB2=AE2+BE2,∴(6+2x)2=62+(4x)2,∴x=2,x=0(舍去),∴AB=10,BE=8,∵BE∥FG,∴△ABE∽△AGF,∴=,∴=,∴BG=.(1)连接AD,由AB是⊙O的直径,得到AD⊥BC,根据等腰三角形的性质得到DF⊥AC,根据射影定理得到CD2=CF•AC,根据三角形的面积公式即可得到结论;(2)连接BE,由AB是⊙O的直径,得到BE⊥AC,根据已知条件得到BE=2DF,设CF=EF=x,则DF=2x,得到BE=4x,AB=AC=6+2x,根据勾股定理列方程得到AB=10,BE=8,根据相似三角形的性质即可得到结论.本题考查了圆周角定理,相似三角形的判定和性质,直角三角形的性质,等腰三角形的性质,正确是作出辅助线是解题的关键.---------------------------------------------------------------------第8题参考答案:解:(1)一元二次方程mx2-(2m+1)x+2=0的判别式△=(2m+1)2-4×m×2=(2m-1)2,∵此方程有两个不相等的实数根,∴(2m-1)2>0,∴m≠,即当m≠时,方程有两个不相等的实数根;(2)令y=0,则mx2-(2m+1)x+2=0,解得x1=2,x2=,∵抛物线y=mx2-(2m+1)x+2与x轴两个交点的横坐标均为整数,且m为负整数,∴m=-1,∴抛物线的解析式为y=-x2+x+2;(3)∵抛物线y=-x2+x+2的对称轴为x=,点P(n,y1),Q(n+1,y2)是此抛物线上的两点,且n<n+1,∴当y1>y2时,y随x的增大而减小,∴n≥.(1)利用一元二次方程根的判别式即可求m值;(2)令y=0,得方程mx2-(2m+1)x+2=0,解方程求得x1=2,x2=,由抛物线y=mx2-(2m+1)x+2与x轴两个交点的横坐标均为整数,可知两根均为整数,当m为负整数时,可得m=-1,从而求得抛物线的解析式;(3)由题意可知,y随x的增大而减小,利用二次函数图象的性质可知n的取值范围.本题考查了一元二次方程根的判别式、二次函数与一元二次方程的关系、二次函数图象的性质,熟练的掌握这些性质是解题的关键.---------------------------------------------------------------------第9题参考答案:解:(1)设CE=x,AF=y,则DE=1-x,DF=1-y,∵AF+CE=EF,∴EF=x+y,∵四边形ABCD是矩形,∴∠D=90°,∴EF2=DE2+DF2,∴(x+y)2=(1-x)2+(1-y)2,xy+x+y=1,∴(AF+1)(CE+1)=(y+1)(x+1)=xy+x+y+1=1+1=2;(2)∠EBF的度数为定值,理由是:如图1,将△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农村一二三产业融合发展的农业产业结构优化升级报告
- 社交电商裂变营销2025年:品牌故事与用户增长策略解析报告
- 共享农业体验园生态农业观光园可持续发展战略报告
- 2024古籍赠送法律协议
- 基于2025年远程医疗技术的分级诊疗模式在传染病防控中的应用报告
- 2023年驾照考试科目一知识点归纳总结
- 2023年继电保护工第二版初级工理论题库
- 2023年造价员考试真题试题和答案
- 2023年经济师中级经济基础知识试题及答案版
- 2025年新能源汽车买卖合同书含充电设施安装
- 酒店微笑培训
- 风机基础沉降观测专项施工方案
- 2024年图书管理员考试知识检测试题及答案
- 《企业安全生产费用提取和使用管理办法》知识培训
- 2025年进山航天班考试题及答案
- 城市规划违建举报信范文
- 广州高一英语必修一单词表
- 学校2025-2026学年度第一学期工作计划
- 干货 - 高中历史全套思维导图100张
- 屋面光伏工程施工组织设计
- 2025年永诚财产保险股份有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论