




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
深圳中考数学圆与相似(大题培优易错难题)一、相似1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。2.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,
∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。3.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:
,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①
当∠EFC=90°,则△DEF∽△OFC,
∴,即,解得:t=;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE=AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t=,∴存在某一时刻t,使得△EFC为直角三角形,此时,t=或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S=(DE+OC)•OD=(t+2)•(4﹣2t)=﹣t2+4(0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S=(DE+OC)•OD=(﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。(2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①
当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可;②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。(3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。4.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN=EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.【答案】(1)证明::∵°,
°
,∴°∵
,∴∵∥,
∴∴°,
∴
过点作
于点,则.在中,
∴
∴(2)解:在中,,
∴∵
a.当点在线段上时,过点作于点,在中,由(1)可知:,
∴
∴
∴
b.当点在线段延长线上时,过点作于点在中,
,
在中,,∴,
∴(3)解:连接,交于点.∵为的中点
∴,
∴.∵
,
∴,∴,
∴,∴.∵∥∴,∴
,
,∵
,
∴,又∵
,
∴∽,∴,即,∴【解析】【分析】(1)过点E作EH⊥MN于点H,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I,结合(1)中的结论MN=EM即可求解;②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I',解RtΔNI′M和可求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G根据所得的比例式即可求解.,5.如图1,过等边三角形ABC边AB上一点D作交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中,________;(2)应用:如图2,将绕点A旋转,请求出的值;(3)拓展:如图3,和是等腰三角形,且,M,N分别是底边BC,DE的中点,若,请直接写出的值.【答案】(1)(2)解:如图2中,连接AM、AN,,都是等边三角形,,,,,,,,,,∽,(3)解:如图3中,连接AM、AN,延长AD交CE于H,交AC于O,,,,,,,,,,,,,,,∽,,,,,,≌,,,,,,,,,,【解析】【解答】解:(1)如图1中,作于H,连接AM,,,,时等边三角形,,,,,平分线段DE,,、N、M共线,,四边形MNDH时矩形,,,故答案为:;【分析】(1)作DH⊥BC于H,连接AM.证四边形MNDH时矩形,所以MN=DH,则MN:BD=DH:BD=sin60°,即可求解;(2)利用△ABC
,
△ADE
都是等边三角形可得AM:AB=AN:AD,易得∠BAD=∠MAN,从而得△BAD∽△MAN,则NM:BD=AM:AB=sin60°,从而求解;(3)连接AM、AN,延长AD交CE于H,交AC于O.先证明△BAD∽△MAN可得NM:BD=AM:AB=sin∠ABC;再证明△BAD≌△CAE,则∠ABD=∠ACE,进而可得∠ABC=45°,可求出答案.6.如图,抛物线
经过A(-3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.①当t为何值时,点N落在抛物线上;②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.【答案】(1)解:∵y=ax2+bx+经过A(﹣3,0),C(5,0)两点,∴,解得:,∴抛物线的解析式为(2)解:∵=﹣(x2﹣2x+1)+=﹣(x﹣1)2+8,∴点B的坐标为(1,8).设直线BC的解析式为y=kx+m,则,解得:,所以直线BC的解析式为y=﹣2x+10.∵抛物线的对称轴与x轴交于点D,∴BD=8,CD=5﹣1=4.∵PM⊥BD,∴PM∥CD,∴△BPM∽△BDC,∴,即,解得:PM=t,∴OE=1+t.∴ME=-2(1+t)+10=8-t..∵四边形PMNQ为正方形,∴NE=NM+ME=8﹣t+t=8﹣t.①点N的坐标为(1+t,8﹣t),若点N在抛物线上,则﹣(1+t﹣1)2+8=8﹣t,整理得,t(t﹣4)=0,解得t1=0(舍去),t2=4,所以,当t=4秒时,点N落在抛物线上;②存在.理由如下:∵PM=t,四边形PMNQ为正方形,∴QD=NE=8﹣t.∵直线BC的解析式为y=﹣2x+10,∴﹣2x+10=8﹣t,解得:x=t+1,∴QR=t+1﹣1=t.又∵EC=CD﹣DE=4﹣t,根据平行四边形的对边平行且相等可得QR=EC,即t=4﹣t,解得:t=,此时点P在BD上所以,当t=时,四边形ECRQ为平行四边形【解析】【分析】(1)用待定系数法,将A,C两点的坐标分别代入y=ax2+bx+,得出一个关于a,b的二元一次方程组,求解得出a,b的值,从而得出抛物线的解析式;(2)首先求出抛物线的顶点B的坐标,然后用待定系数法求出直线BC的解析式为y=﹣2x+10.根据点到坐标轴的距离得出BD,CD的长度,根据垂直于同一直线的两条直线互相平行得出PM∥CD,根据平行于三角形一边的直线,截,其它两边,所截的三角形与原三角形相似得出△BPM∽△BDC,根据相似三角形对应边成比例得出BP∶BD=PM∶CD,进而得出关于t的方程,求解得出PM,进而得出OE,ME,根据正方形的性质由NE=NM+ME得出NE的长,进而表示出N点的坐标,若点N在抛物线上,根据抛物线上的点的特点,得出关于t的方程,求解得出t的值,所以,当t=4秒时,点N落在抛物线上;②存在.理由如下:根据PM的长及正方形的性质从而表示出QD=NE的长度,进而得出方程,求出x的值,进而表示出QR根据线段的和差及平行四边形的对边平行且相等可得QR=EC,从而得出关于t的方程,求解得出答案。7.如图,在矩形ABCD中,,,点E是边BC的中点动点P从点A出发,沿着AB运动到点B停止,速度为每秒钟1个单位长度,连接PE,过点E作PE的垂线交射线AD与点Q,连接PQ,设点P的运动时间为t秒.(1)当时,________;(2)是否存在这样的t值,使为等腰直角三角形?若存在,求出相应的t值,若不存在,请说明理由;(3)当t为何值时,的面积等于10?【答案】(1)(2)解:存在,.如图,记QE与CD的交点为F,由题意知,,四边形ABCD是矩形,,,,,,,,,,∽,,即,,,,,∽,,即,,则,为等腰直角三角形,,即,解得,故当时,为等腰直角三角形(3)解:,由题意知,解得或,,.【解析】【解答】解:(1)根据题意知,当时,,则,,点E是边BC的中点,,则,在中,,故答案为:;【分析】(1)由题意得出AP=1,BP=3,BE=CE=1,利用勾股定理求得PE=,根据正弦函数的定义可得答案;(2)证△BPE∽△CEF得,据此求得CF=,DF=,再证△ECF∽△QDF得,据此求得DQ=15﹣4t,AQ=17﹣4t,根据△APQ为等腰直角三角形列方程求解可得答案;(3)根据S△PEQ=S直角梯形ABEQ﹣S△APQ﹣S△BPE=2t2﹣16t+34及△PEQ的面积等于10列方程求解可得.8.如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.(1)当m=1时,该抛物线的解析式为:________.(2)求证:∠BCA=∠CAO;(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.【答案】(1)y=﹣x2+x+1(2)证明:把点P、A的坐标代入一次函数表达式:y=kx+b得:,解得:,则直线PA的表达式为:y=x+m,令y=0,解得:x=﹣m﹣1,即点B坐标为(﹣m﹣1,0),同理直线OP的表达式为:y=x…②,将①②联立得:a(x﹣m﹣1)2+2m﹣x=0,其中a=﹣,该方程的常数项为:a(m+1)2+2m,由韦达定理得:x1x2=xC•xP===﹣(m+1)2,其中xP=m+1,则xC=﹣m﹣1=xB,∴BC∥y轴,∴∠BCA=∠CAO(3)解:如图当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,设:直线l与x轴的交点为D点,连接BB′、CC′,∵点C关于l的对称点为C′,∴CC′⊥l,而OD⊥l,∴CC′∥OD,∴∠POD=∠PCC′,∵∠PB′C′+∠PB′B=180°,△PB′C′由△PBC旋转而得,∴∠PBC=∠PB′C′,PB=PB′,∠BPB′=∠CPC′,∴∠PBC+∠PB′B=180°,∵BC∥AO,∴∠ABC+∠BAO=180°,∴∠PB′B=∠BAO,∵PB=PB′,PC=PC′,∴∠PB′B=∠PBB′=,∴∠PCC′=∠PC′C=,∴∠PB′B=∠PCC′,∴∠BAO=∠PCC′,而∠POD=∠PCC′,∴∠BAO=∠POD,而∠POD=∠BAO=90°,∴△BAO∽△POD,∴,将BO=m+1,PD=2m,AO=m,OD=m+1代入上式并解得:m=1+(负值已舍去)【解析】【解答】解:(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,则二次函数的表达式为:y=﹣(x﹣m﹣1)2+2m…①,则点P的坐标为(m+1,2m),点A的坐标为(0,m),把m=1代入①式,整理得:y=﹣x2+x+1,故:答案为:y=﹣x2+x+1;【分析】(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,把m=1代入上式,即可求解;(2)求出点B、C的坐标,即可求解;(3)当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,证△BAO∽△POD,即可求解.二、圆的综合9.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长AO交O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=4,CD=6,求平行四边形OABC的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD的面积即可求解.试题解析:(1)证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC是平行四边形,∴OC∥AB,∴∠EOC=∠A,∠COD=∠ODA,∴∠EOC=∠DOC,在△EOC和△DOC中,∴△EOC≌△DOC(SAS),∴∠ODC=∠OEC=90°,即OD⊥DC,∴CD是⊙O的切线;(2)由(1)知CD是圆O的切线,∴△CDO为直角三角形,∵S△CDO=CD•OD,又∵OA=BC=OD=4,∴S△CDO=×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.10.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。(1)如图1,如果点M是线段AB的中点,且⊙M的半径等于4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴,y轴都相切,切点分别为E,F,试求出点M的坐标;(3)如图3,⊙M与x轴,y轴,线段AB都相切,切点分别为E,F,G,试求出点M的坐标(直接写出答案)【答案】(1)OB与⊙M相切;(2)M(-,);(3)M(-2,2)【解析】分析:(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=x+6,设M(a,﹣a),把x=a,y=﹣a代入y=x+6得出关于a的方程,求出即可.(3)连接ME、MF、MG、MA、MB、MO,设ME=MF=MG=r,根据S△ABC=AO•ME+BO•MF+AB•MG=AO•BO求得r=2,据此可得答案.详解:(1)直线OB与⊙M相切.理由如下:设线段OB的中点为D,如图1,连结MD,∵点M是线段AB的中点,所以MD∥AO,MD=4,∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上.又∵点D在直线OB上,∴直线OB与⊙M相切;(2)如图2,连接ME,MF,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6.∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得:﹣a=a+6,得:a=﹣,∴点M的坐标为(﹣).(3)如图3,连接ME、MF、MG、MA、MB、MO,∵⊙M与x轴,y轴,线段AB都相切,∴ME⊥AO、MF⊥BO、MG⊥AB,设ME=MF=MG=r,则S△ABC=AO•ME+BO•MF+AB•MG=AO•BO.∵A(﹣8,0),B(0,6),∴AO=8、BO=6,AB==10,∴r•8+r•6+r•10=×6×8,解得:r=2,即ME=MF=2,∴点M的坐标为(﹣2,2).点睛:本题考查了圆的综合问题,掌握直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解答此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是d,当d=r时,直线l和⊙O相切.11.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=,求AE的长.【答案】(1)证明见解析;(2)【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sinD=,∴OD==3,∴CD=OD﹣OC=2.∵AD==2.又∵△CED∽△ACD,∴,∴DE==,∴AE=AD﹣DE=2﹣=.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.12.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2.∵EB=4,BF=2,∴EF==.∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=.∵EF=,∴DE=×=.∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴=,即GE•ED=AE•EB,∴•GE=8,即GE=,则GD=GE+ED=.∴.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.13.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】【分析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,证明,得到,,根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案为.(2).证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴为等腰直角三角形,.∵,∴.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,∴.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.14.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连结BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.【答案】(1)M的半径r=;(2)证明见解析;(3)点E的坐标为(,).【解析】试题分析:根据点A和点B的坐标得出OA和OB的长度,根据Rt△AOB的勾股定理得出AB的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD,然后结合已知条件得出角平分线;根据角平分线得出△ABE≌△HBE,从而得出BH=BA=2,从而求出OH的长度,即点E的纵坐标,根据Rt△AOB的三角函数得出∠ABO的度数,从而得出∠CBO的度数,然后根据Rt△HBE得出HE的长度,即点E的横坐标.试题解析:(1)∵点A为(,0),点B为(0,-)∴OA=OB=∴根据Rt△AOB的勾股定理可得:AB=2∴M的半径r=AB=.(2)根据同弧所对的圆周角相等可得:∠ABD=∠COD∵∠COD=∠CBO∴∠ABD=∠CBO∴BD平分∠ABO(3)如图,由(2)中的角平分线可得△ABE≌△HBE∴BH=BA=2∴OH=2-=在Rt△AOB中,∴∠ABO=60°∴∠CBO=30°在Rt△HBE中,HE=∴点E的坐标为(,)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.15.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 等式性质说课课件
- 心理技能全套课件资源
- 心理学意识基础知识课件
- 抽成合同协议书范本
- 童诗白模拟电子技术课件
- 建设工程维修协议书范本
- 几方安全协议书范本
- 牛奶合作合同协议书范本
- 个人转让协议书范本大全
- 2025年娱乐、游览用船舶项目发展计划
- 2024年上海市中考英语试题和答案
- 律师事务所廉洁从业方案
- 《代谢组学介绍》课件
- 个别化教育计划(IEP)模板
- 2025届高考作文押题预测10篇(附题目)
- 矿山开采土方外运施工方案
- 零碳智慧园区解决方案
- 贵州旅投集团考试真题
- DL∕ T 748.3-2001 火力发电厂锅炉机组检修导则 第3部分阀门与汽水管道系统检修
- 初中必背古诗61首
- 沪教版一年级下册数学口算题大全带答案
评论
0/150
提交评论