版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter8
IntervalEstimationPopulationMean:sKnownPopulationMean:sUnknownDeterminingtheSampleSizePopulationProportionApointestimatorcannotbeexpectedtoprovidetheexactvalueofthepopulationparameter.Anintervalestimatecanbecomputedbyaddingandsubtractingamarginoferrortothepointestimate.
PointEstimate+/-MarginofErrorThepurposeofanintervalestimateistoprovideinformationabouthowclosethepointestimateistothevalueoftheparameter.MarginofErrorandtheIntervalEstimateThegeneralformofanintervalestimateofapopulationmeanis
MarginofErrorandtheIntervalEstimateIntervalEstimateofaPopulationMean:
sKnownInordertodevelopanintervalestimateofapopulationmean,themarginoferrormustbecomputedusingeither:thepopulationstandarddeviations,orthesamplestandarddeviationssisrarelyknownexactly,butoftenagoodestimatecanbeobtainedbasedonhistoricaldataorotherinformation.Werefertosuchcasesasthesknowncase.Thereisa1-
probabilitythatthevalueofasamplemeanwillprovideamarginoferroroforless.
/2
/21-
ofallvaluesSamplingdistributionofIntervalEstimateofaPopulationMean:
sKnown
/2
/21-
ofallvaluesSamplingdistributionof[--------------------------------------------------][--------------------------------------------------][--------------------------------------------------]intervaldoesnotincludemintervalincludesmintervalincludesmIntervalEstimateofaPopulationMean:
sKnownIntervalEstimateofmIntervalEstimateofaPopulationMean:
sKnownwhere:isthesamplemean 1-
istheconfidencecoefficient
z
/2isthezvalueprovidinganareaof
/2intheuppertailofthestandard normalprobabilitydistribution
sisthepopulationstandarddeviation
nisthesamplesizeIntervalEstimateofaPopulationMean:
sKnownValuesofza/2fortheMostCommonlyUsedConfidenceLevels90%.10.05.95001.645ConfidenceTableLevela
a/2Look-upAreaza/2
95%.05.025.97501.96099%.01.005.99502.576MeaningofConfidence
Because90%ofalltheintervalsconstructedusingwillcontainthepopulationmean,wesayweare90%confidentthattheintervalincludesthepopulationmeanm.
Wesaythatthisintervalhasbeenestablishedatthe90%confidencelevel.
Thevalue.90isreferredtoastheconfidence
coefficient.IntervalEstimateofaPopulationMean:
KnownExample:DiscountSounds DiscountSoundshas260retailoutletsthroughouttheUnitedStates.Thefirmisevaluatingapotentiallocationforanewoutlet,basedinpart,onthemeanannualincomeoftheindividualsinthemarketingareaofthenewlocation.Asampleofsizen=36wastaken;thesamplemeanincomeis$41,100.Thepopulationisnotbelievedtobehighlyskewed.Thepopulationstandarddeviationisestimatedtobe$4,500,andtheconfidencecoefficienttobeusedintheintervalestimateis.95.95%ofthesamplemeansthatcanbeobservedarewithin+1.96ofthepopulationmean
.Themarginoferroris:Thus,at95%confidence,themarginoferroris$1,470.IntervalEstimateofaPopulationMean:
KnownExample:DiscountSoundsIntervalestimateof
is:IntervalEstimateofaPopulationMean:
KnownWeare95%confidentthattheintervalcontainsthepopulationmean.$41,100+$1,470or$39,630to$42,570Example:DiscountSoundsIntervalEstimateofaPopulationMean:
Known90%3.2978.71to85.29ConfidenceMarginLevelofErrorIntervalEstimate95%3.9278.08to85.9299%5.1576.85to87.15Example:DiscountSoundsInordertohaveahigherdegreeofconfidence,themarginoferrorandthusthewidthoftheconfidenceintervalmustbelarger.IntervalEstimateofaPopulationMean:
sKnownAdequateSampleSizeInmostapplications,asamplesizeofn=30isadequate.Ifthepopulationdistributionishighlyskewedorcontainsoutliers,asamplesizeof50ormoreisrecommended.IntervalEstimateofaPopulationMean:
sKnownAdequateSampleSize(continued)Ifthepopulationisbelievedtobeatleastapproximatelynormal,asamplesizeoflessthan15canbeused.Ifthepopulationisnotnormallydistributedbutisroughlysymmetric,asamplesizeassmallas15willsuffice.IntervalEstimateofaPopulationMean:
sUnknownIfanestimateofthepopulationstandarddeviationscannotbedevelopedpriortosampling,weusethesamplestandarddeviationstoestimates.Thisisthesunknowncase.Inthiscase,theintervalestimateformisbasedonthetdistribution.(We’llassumefornowthatthepopulationisnormallydistributed.)WilliamGosset,writingunderthename“Student”,isthefounderofthetdistribution.tDistributionGossetwasanOxfordgraduateinmathematicsandworkedfortheGuinnessBreweryinDublin.Hedevelopedthetdistributionwhileworkingonsmall-scalematerialsandtemperatureexperiments.Thetdistributionisafamilyofsimilarprobabilitydistributions.tDistributionAspecifictdistributiondependsonaparameterknownasthedegreesoffreedom.Degreesoffreedomrefertothenumberofindependentpiecesofinformationthatgointothecomputationofs.tDistributionAtdistributionwithmoredegreesoffreedomhaslessdispersion.Asthedegreesoffreedomincreases,thedifferencebetweenthetdistributionandthestandardnormalprobabilitydistributionbecomessmallerandsmaller.tDistributionStandardnormaldistributiontdistribution(20degreesoffreedom)tdistribution(10degreesoffreedom)0z,tFormorethan100degreesoffreedom,thestandardnormalzvalueprovidesagoodapproximationtothetvalue.tDistributionThestandardnormalzvaluescanbefoundintheinfinitedegrees(
)rowofthetdistributiontable.tDistributionStandardnormalzvaluesIntervalEstimatewhere:1-
=theconfidencecoefficient
t
/2=thetvalueprovidinganareaof
/2 intheuppertailofatdistribution withn-1degreesoffreedom
s=thesamplestandarddeviationIntervalEstimateofaPopulationMean:
sUnknownAreporterforastudentnewspaperiswritinganarticleonthecostofoff-campushousing.Asampleof16efficiencyapartmentswithinahalf-mileofcampusresultedinasamplemeanof$750permonthandasamplestandarddeviationof$55.IntervalEstimateofaPopulationMean:
sUnknownExample:ApartmentRentsLetusprovidea95%confidenceintervalestimateofthemeanrentpermonthforthepopulationofefficiencyapartmentswithinahalf-mileofcampus.Wewillassumethispopulationtobenormallydistributed. At95%confidence,
=.05,and
/2=.025.Inthetdistributiontableweseethatt.025=2.131.t.025isbasedonn
-1=16-1=15degreesoffreedom.IntervalEstimateofaPopulationMean:
sUnknownWeare95%confidentthatthemeanrentpermonthforthepopulationofefficiencyapartmentswithinahalf-mileofcampusisbetween$720.70and$779.30.IntervalEstimateIntervalEstimateofaPopulationMean:
sUnknownMarginofErrorIntervalEstimateofaPopulationMean:
s
UnknownAdequateSampleSizeIfthepopulationdistributionishighlyskewedorcontainsoutliers,asamplesizeof50ormoreisrecommended.Inmostapplications,asamplesizeofn=30is
adequatewhenusingtheexpressiontodevelopanintervalestimateofapopulationmean.IntervalEstimateofaPopulationMean:
s
UnknownAdequateSampleSize(continued)Ifthepopulationisbelievedtobeatleastapproximatelynormal,asamplesizeoflessthan15canbeused.Ifthepopulationisnotnormallydistributedbutisroughlysymmetric,asamplesizeassmallas15willsuffice.SummaryofIntervalEstimationProceduresforaPopulationMeanCanthepopulationstandarddeviationsbeassumedknown?UseYesNoUsesKnownCasesUnknownCaseUsethesamplestandarddeviationstoestimatesLetE=thedesiredmarginoferror.
Eistheamountaddedtoandsubtractedfromthepointestimatetoobtainanintervalestimate.SampleSizeforanIntervalEstimate
ofaPopulationMeanIfadesiredmarginoferrorisselectedpriortosampling,thesamplesizenecessarytosatisfythemarginoferrorcanbedetermined.SampleSizeforanIntervalEstimate
ofaPopulationMeanMarginofError
NecessarySampleSize
SampleSizeforanIntervalEstimate
ofaPopulationMeanTheNecessarySampleSizeequationrequiresavalueforthepopulationstandarddeviations.Ifsisunknown,apreliminaryorplanningvalueforscanbeusedintheequation.1.Usetheestimateofthepopulationstandarddeviationcomputedinapreviousstudy.2.Useapilotstudytoselectapreliminarystudyandusethesamplestandarddeviationfromthestudy.3.Usejudgmentora“bestguess”forthevalueofs.
RecallthatDiscountSoundsisevaluatingapotentiallocationforanewretailoutlet,basedinpart,onthemeanannualincomeoftheindividualsinthemarketingareaofthenewlocation.SampleSizeforanIntervalEstimate
ofaPopulationMeanExample:DiscountSoundsSupposethatDiscountSounds’managementteamwantsanestimateofthepopulationmeansuchthatthereisa.95probabilitythatthesamplingerroris$500orless.Howlargeasamplesizeisneededtomeettherequiredprecision?
At95%confidence,z.025=1.96.Recallthat
=4,500.SampleSizeforanIntervalEstimate
ofaPopulationMeanAsampleofsize312isneededtoreachadesiredprecisionof+$500at95%confidence.Thegeneralformofanintervalestimateofapopulationproportionis
IntervalEstimate
ofaPopulationProportionIntervalEstimate
ofaPopulationProportionThesamplingdistributionofplaysakeyroleincomputingthemarginoferrorforthisintervalestimate.Thesamplingdistributionof
canbeapproximatedbyanormaldistributionwhenevernp
>5and
n(1–p)>5.
/2
/2IntervalEstimate
ofaPopulationProportionNormalApproximationofSamplingDistributionofSamplingdistributionofp1-
ofallvaluesIntervalEstimateIntervalEstimate
ofaPopulationProportionwhere:1-
istheconfidencecoefficient
z
/2isthezvalueprovidinganareaof
/2intheuppertailofthestandard normalprobabilitydistribution isthesampleproportionPoliticalScience,Inc.(PSI)specializesinvoterpollsandsurveysdesignedtokeeppoliticalofficeseekersinformedoftheirpositioninarace.Usingtelephonesurveys,PSIinterviewersaskregisteredvoterswhotheywouldvoteforiftheelectionwereheldthatday.IntervalEstimateofaPopulationProportionExample:PoliticalScience,Inc.Inacurrentelectioncampaign,PSIhasjustfoundthat220registeredvoters,outof500contacted,favoraparticularcandidate.PSIwantstodevelopa95%confidenceintervalestimatefortheproportionofthepopulationofregisteredvotersthatfavorthecandidate.IntervalEstimateofaPopulationProportionExample:PoliticalScience,Inc.where:n=500,=220/500=.44,z
/2=1.96IntervalEstimateofaPopulationProportionPSIis95%confidentthattheproportionofallvotersthatfavorthecandidateisbetween.3965and.4835.=.44+.0435Solvingforthenecessarysamplesize,wegetMarginofErrorSampleSizeforanIntervalEstimate
ofaPopulationProportionHowever,willnotbeknownuntilafterwehave
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45153-2024老龄化社会照顾人员包容性组织通用要求与指南
- 手术室护士工作小结范文(5篇)
- 我爱读书演讲稿15篇
- 护理督查工作汇报
- 感恩节前的精彩讲话稿(9篇)
- 情感电台广播稿集锦15篇
- 市场营销毕业的实习总结
- 师德师风宣讲活动简报(18篇)
- 初级会计实务-2021年5月16日上午初级会计职称考试《初级会计实务》真题
- 初级会计经济法基础-初级会计《经济法基础》模考试卷817
- 搞笑小品剧本《大城小事》台词完整版
- 《大模型原理与技术》全套教学课件
- 2023年护理人员分层培训、考核计划表
- 《销售培训实例》课件
- 2025年四川省新高考八省适应性联考模拟演练(二)地理试卷(含答案详解)
- 【经典文献】《矛盾论》全文
- Vue3系统入门与项目实战
- 2024年宁夏回族自治区中考英语试题含解析
- 光伏发电项目试验检测计划
- 房屋建筑工程投标方案(技术方案)
- 2025年高考语文作文备考:议论文万能模板
评论
0/150
提交评论