《分式》的教学反思5篇_第1页
《分式》的教学反思5篇_第2页
《分式》的教学反思5篇_第3页
《分式》的教学反思5篇_第4页
《分式》的教学反思5篇_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《分式》的教学反思5篇《分式》的教学反思篇1

通过复习同分母异分母分数的加减计算类比学习分式的加减运算以分式的通分(分母为异分母的情况)作为预备知识检测,再到学生自主学习所完成的基础练习题及熟练法则,通过让学生板演计算过程后出现的问题(分子的加减,去括号问题及分式的最简化等)给予讲解及问题的讨论。最后是课堂练习巩固和小结作业布置。

在授课结束后发现学生对于同分母的分式的加减运算掌握得比较好但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。

分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,除法应转化为乘法。并且计算的最终结果应该为最简分式的形式,在计算时应先观察分式的特点从而分析是不是可以结合乘法的分配律进行计算从而达到化繁为简的目的。

《分式》的教学反思篇2

1、在复习中引入新的教学重点,回顾以往所学习的方程知识,采用让学生自己说出几个一元一次方程并求解的方法,充分发挥了学生的主动性,活跃了课堂气氛。为本节课开了一个好头。

2、利用学生的一个求不出解的一元一次方程(x-1)/3+1=(2x-3)/6,借机让学生明确可化为ax=b(a不等于0)的方程才是一元一次方程。自然巧妙的让学生为后面的学习做好了铺垫。也吸引了学生的注意力,让学生觉得有趣而一步一步的听下去。

3、通过设问,活动,让学生亲自感知,体验,在感知和体验中进行质疑、思考与探究,通过质疑、思考与探索发现新知,激发了学生的参与热情,培养了学生的探索意识,使学生在喜悦的气氛下自主的学习。

通过本节课,也使我领悟到,在今后的教学中,应做到以下几点:

1、变枯燥为有趣同,让学生成为整个教学的重点。

兴趣是最好的老师,只有充分调动学生的学习热情,才能使学生真正参与学习中来,才能主动地去学习。当然,这需要老师多下功夫,多联系实际,多设计情景,让学生觉得不是在上课,而是在演电视剧,而他就是其中的主人公。

2、变复杂为简单。

越简单学生就越想学,越会做学生就越想做,简单之中蕴含着大道理,简单的做多了,熟练了,才可能去做复杂的。当然这需要形式多样,而不能单一。

3、给学生足够的思考空间,不要急于给出答案,就是学生说错了,也不要把学生硬拉过来,而应该给学生留下思考的空间。

《分式》的教学反思篇3

下面是我在教学中的几点体会:

一、教学中的发现

(1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:

1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;

2.增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

(3)列分式方程错误百出。

针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

二、教学后的反思

通过这节课的教学及课后几位专家的点评,这节课的教学目的基本达到,不足之处本节课的容量较大,如果能采用多媒体教学效果会更好;在以后的教学中我将继续努力,提高自己的教学水平。

《分式》的教学反思篇4

本节是学习了分式的基本性质后的内容,是分式的基本运算内容之一,分式的加减教学反思。其中,分式加减运算是本节课的重点,异分母的分式加减是本节课的难点,而异分母的分式加减运算是本节课的难点。而异分母的分式加减运算可以转化到同分母的分式加减运算中,因此,掌握好同分母的分式加减运算是关键,本人从以下几方面作反思:

(1)成功之处

本课从实际问题引入,让学生直接感受到实际生活中会碰到分式的加减运算,这就有必要掌握分式加减运算的方法,从而引出本节内容。

由于分数与分式有着很多类似的性质,因而从直观的分数加减法运算开始。先探究同分母分式的加减运算的法则,通过类比的思想方法,由数的运算引出式的运算规律,体现数学知识由具体到抽象,从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,学生很快融入了课堂,调动了学生学习的积极性,教学反思《分式的加减教学反思》。而后,同样利用类比方法,安排了异分母分式加减运算的学习,这样由简到繁,由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握,而且通过通分将异分母的分式加减转化为同分母的分式加减运算上,注重知识间的联系,体现了数学中转化的思想方法,课堂上气氛活跃,学生们积极参与,从课堂学生做习题的情况来看,知识掌握比较好,知识已落实到位。

(2)不足之处

本课出现了有头无尾的情况,前后呼应还没做到位,没有解决引例中“”如何计算这个问题,这是本节课的一个最大的遗憾。课堂教学真的是“一门缺憾的艺术”正是有着这样或那样的缺憾,才使我们更有动力的在探索地道路上大步前行。

一节数学课,经过反思,会发现许多值得推敲的地方,会发觉好多细节的地方需要精心设计,在反思中,能提升自己的认识,为以后的教学积累宝贵的经验,让自己更贴近学生。

《分式》的教学反思篇5

一、要创造性地使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。

二、相信学生并为学生提供充分展示自己的机会

学生已经学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论