人教版初中数学公式大全(15篇)_第1页
人教版初中数学公式大全(15篇)_第2页
人教版初中数学公式大全(15篇)_第3页
人教版初中数学公式大全(15篇)_第4页
人教版初中数学公式大全(15篇)_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第人教版初中数学公式大全(15篇)

人教版初中数学公式大全精选(15篇)

人教版初中数学公式大全1

辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

初中数学正方形定理公式

正方形定理公式

正方形的特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的.掌握,相信同学们会取得很好的成绩的哦。

初中数学平行四边形定理公式

平行四边形

平行四边形的性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

人教版初中数学公式大全2

1.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

2.恒等变换:两个数字来相减,互换位置常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

3.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

4.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

5.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

6.“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)

7.有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;__值相等“零”正好。【注】“大”减“小”是指__值的大小。

8.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

9.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

12.一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

13.一元二次不等式、一元一次__值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

14.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出简公分母,通分不是很难;变号必须两处,结果要求简。

15.分式方程的解法步骤:同乘简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

16.简根式的条件:简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

17.特殊点坐标特征:坐标平面点(_,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;_轴上y为0,_为0在Y轴。

18.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

19.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行_轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

20.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,_轴对称y相反,Y轴对称,_前面添负号;原点对称较好记,横纵坐标变符号。

21.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

22.函数图像的移动规律:若把一次函数解析式写成y=k(_+0)+b、二次函数的解析式写成y=a(_+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

23.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的'一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

24.三角函数的增减性:正增余减

25.特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

26.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。

27.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。

28.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。

29.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆较大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

30.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

31.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

32.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都__,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.

33.函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,_增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。

34.反比例函数双曲线,待定只需一个点,正k落在一三限,_增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线_、y的顺序可交换。

35.二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号简便,_轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用关键。

人教版初中数学公式大全3

1数轴

11有向直线

在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相

规定了正方向的直线,叫做有向直线,读作有向直线l

12数轴

我们把数轴上任意一点所对应的实数称为点的坐标

对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化

数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值

2平面直角坐标系

21平面的直角坐标化

在平面内任取一点o为作为原点(基准点),过o引两条互相垂直的,以o为公共原点的数轴,一般地,两个数轴选取相同的单位长度这样就构成了一个平面直角坐标系_轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为直角坐标系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面两坐标轴把坐标平面分成四个部分,它们叫做四个象限

22两点间的距离

23中点公式

3函数

31常量,变量和函数

在某一过程中可以去不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数

一般地,设在变活过程中有两个互相关联的变量_,y,如果对于_在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是_的函数,_叫做自变量

1.函数的定义域

2.对应法则

(1)解析法

就是用等式来表示一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)

(2)列表法

(3)图像法

3函数的值域

一般的,当函数f(_)的自变量_去定义域D中的一个确定的值a,函数有唯一确定的对应值这个对应值,称为_=a时的函数值,简称函数值,记作:f(a)

32函数的图像

若把自变量_的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(_,f(_))的集合构成一个图形F,而集F成为函数y=f(_)的图像

知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤

4正比例函数

41正比例函数

一般地,函数y=k_(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与_之间的比例函数确定了比例函数k,就可以确定一个正比例函数

正比例函数y=k_有下列性质:

(3)当k>0时,它的图像经过第一,三象限,y随着_的值增大而增大;当k

(2)随着比例函数的绝对值的增加,函数图像渐渐离开_轴而接近于y轴,因此,比例系数k和直线y=k_与_轴正方向所成的角有关据此,k叫做直线y=k_的斜率

42反比例函数

一般地,函数y=k/_(k是不等于0的常数)叫做反比例函数

反比例函数y=k/_有下列性质:

(7)当k>0时,他的图像的两个分支分别位于第一,三象限内,在每一个象限内,y随_的值增大而减小;当k

(8)它的图像的两个分支都无限接近但永远不能达到_轴和y轴

5一次函数及其图像

51一次函数及其图像

如果k=0时,函数变形为y=b,无论_在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数

直线y=k_+b与y轴交与点(0,b),b叫做直线y=k_+b在y轴上的截距,简称纵截距

52一次函数的性质

函数y=f(小),在a〈_〈b上,如果函数值随着自变量_的值增加而增加,那么我们说函数f(_)在a〈_

如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法

初中数学正方形定理公式

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式

正方形的特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

初中数学平行四边形定理公式

同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形

平行四边形的性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的'对角线互相平分;

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

初中数学直角三角形定理公式

下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

直角三角形的性质:

①直角三角形的两个锐角互为余角;

②直角三角形斜边上的中线等于斜边的一半;

③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

④直角三角形中30度

角所对的直角边等于斜边的一半;

直角三角形的判定:

①有两个角互余的三角形是直角三角形;

②如果三角形的三边长a、b、c有下面关系a^2+b^2=c^2

,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式

下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:

①等腰三角形的两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

初中数学三角形定理公式

对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

人教版初中数学公式大全4小学升初中数学公式大全

全长=株距_株数

株距=全长÷株数

如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距_(株数+1)

株距=全长÷(株数+1)

封闭线路上的植树问题的`数量关系如下

株数=段数=全长÷株距

全长=株距_株数

株距=全长÷株数

差倍问题

差÷(倍数-1)=小数

小数_倍数=大数

(或小数+差=大数)

小学数学图形计算公式

1.正方形C周长S面积a边长周长=边长_4C=4a面积=边长_边长S=a_a

2.正方体V:体积a:棱长表面积=棱长_棱长_6S表=a_a_6体积=棱长_棱长_棱长V=a_a_a

3.长方形C周长S面积a边长周长=(长+宽)_2C=2(a+b)面积=长_宽S=ab

4.长方体V:体积s:面积a:长b:宽h:高(1)表面积(长_宽+长_高+宽_高)_2S=2(ab+ah+bh)(2)体积=长_宽_高V=abh

5.三角形s面积a底h高面积=底_高÷2s=ah÷2三角形高=面积_2÷底三角形底=面积_2÷高

6.平行四边形s面积a底h高面积=底_高s=ah

7.梯形s面积a上底b下底h高面积=(上底+下底)_高÷2s=(a+b)_h÷2

8.圆形S面积C周长∏d=直径r=半径(1)周长=直径_∏=2_∏_半径C=∏d=2∏r(2)面积=半径_半径_∏

9.圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长_高(2)表面积=侧面积+底面积_2(3)体积=底面积_高(4)体积=侧面积÷2_半径

10.圆锥体v:体积h:高s;底面积r:底面半径体积=底面积_高÷3总数÷总份数=平均数

单位换算

(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

(4)1吨=1000千克1千克=1000克=1公斤=1市斤

(5)1公顷=10000平方米1亩=666.666平方米

(6)1升=1立方分米=1000毫升1毫升=1立方厘米

1.

每份数_份数=总数

总数÷每份数=份数

总数÷份数=每份数

2

1倍数_倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3

速度_时间=路程

路程÷速度=时间

路程÷时间=速度

4

单价_数量=总价

总价÷单价=数量

总价÷数量=单价

5

工作效率_工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6

加数+加数=和

和-一个加数=另一个加数

7

被减数-减数=差

被减数-差=减数

差+减数=被减数

8

因数_因数=积

积÷一个因数=另一个因数

9

被除数÷除数=商

被除数÷商=除数

商_除数=被除数

人教版初中数学公式大全5

把一元二次方程化成a_2+b_+c的一般形式,然后把各项系数a,b,c的值代入求根公式就可得到方程的根。

公式法

公式:_=[-b±√(b2-4ac)]/2a

当Δ=b2-4ac>0时,求根公式为_1=[-b+√(b2-4ac)]/2a,_2=[-b-√(b24ac)]/2a(两个不相等的实数根)

当Δ=b2-4ac=0时,求根公式为_1=_2=-b/2a(两个相等的实数根)

当Δ=b2-4ac

例3.用公式法解方程2_2-8_=-5

解:将方程化为一般形式:2_2-8_+5=0

∴a=2,b=-8,c=5

b2-4ac=(-8)2-4_2_5=64-40=24>0

∴_=(4±√6)/2

∴原方程的解为_?=(4+√6)/2,_?=(4-√6)/2.

大家不知道的'是两个复数根在初中数学的学习中理解为无实数根。

人教版初中数学公式大全6

1三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

2梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh

3(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

4(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d

5(3)等比性质如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b

6平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

7推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

8定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

9平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

10定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

11相似三角形判定定理1两角对应相等,两三角形相似(ASA)

12直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

13判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

14判定定理3三边对应成比例,两三角形相似(SSS)

15定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

16性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

17性质定理2相似三角形周长的比等于相似比

18性质定理3相似三角形面积的比等于相似比的平方

19任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

20任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

21圆是定点的距离等于定长的点的集合

22圆的内部可以看作是圆心的距离小于半径的点的集合

23圆的`外部可以看作是圆心的距离大于半径的点的集合

24同圆或等圆的半径相等

25到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

26和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

27到已知角的两边距离相等的点的轨迹,是这个角的平分线

28到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

29定理不在同一直线上的三点确定一个圆。

30垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

31推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

32推论2圆的两条平行弦所夹的弧相等

33圆是以圆心为对称中心的中心对称图形

34定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

35推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

36定理一条弧所对的圆周角等于它所对的圆心角的一半

37推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

38推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径

39推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

40定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

人教版初中数学公式大全7

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

和差化积

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

平方差公式:a平方-b平方=(a+b)(a-b)

完全平方和公式:(a+b)平方=a平方+2ab+b平方

完全平方差公式:(a-b)平方=a平方-2ab+b平方

两根式:a_^2+b_+c=a[_-(-b+√(b^2-4ac))/2a][_-(-b-√(b^2-4ac))/2a]两根式

立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

人教版初中数学公式大全8

一、常用数学公式之三角函数公式

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

二、初中数学正方形定理公式

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式

特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

三、初中数学平行四边形定理公式

同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形

性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

四、初中数学直角三角形定理公式

下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

性质:

①直角三角形的两个锐角互为余角;

②直角三角形斜边上的中线等于斜边的一半;

③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

④直角三角形中30度角所对的直角边等于斜边的一半;

判定:

①有两个角互余的三角形是直角三角形;

②如果三角形的三边长a、b、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。

五、初中数学等腰三角形的性质定理公式

下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

性质:

①等腰三角形的.两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

六、初中数学三角形定理公式

对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

人教版初中数学公式大全9

1、每份数_份数=总数总数÷每份数=份数总数÷份数=每份数

2、1倍数_倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度_时间=路程路程÷速度=时间路程÷时间=速度

4、单价_数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率_工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数_因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商_除数=被除数小学数学图形计算公式

1、正方形C周长S面积a边长周长=边长_4C=4a面积=边长_边长S=a_a

2、正方体V:体积a:棱长表面积=棱长_棱长_6S表=a_a_6体积=棱长_棱长_棱长V=a_a_a

3、长方形C周长S面积a边长周长=(长+宽)_2C=2(a+b)面积=长_宽S=ab

4、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长_宽+长_高+宽_高)_2S=2(ab+ah+bh)(2)体积=长_宽_高V=abh

5三角形s面积a底h高面积=底_高÷2s=ah÷2三角形高=面积_2÷底三角形底=面积_2÷高

6平行四边形s面积a底h高面积=底_高s=ah

7梯形s面积a上底b下底h高面积=(上底+下底)_高÷2s=(a+b)_h÷2

8圆形S面积C周长∏d=直径r=半径(1)周长=直径_∏=2_∏_半径C=∏d=2∏r(2)面积=半径_半径_∏

9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长

(1)侧面积=底面周长_高

(2)表面积=侧面积+底面积_2

(3)体积=底面积_高

(4)体积=侧面积÷2_半径

人教版初中数学公式大全10

1、平方与平方根

2、面积与平方

(1)任意两个正数的和的平方,等于这两个数的平方和

(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍

任意两个有理数的和(或差)的平方,等于这两个数的'平方和,再加上(或减去)这两个数乘积的2倍

3、平方根

1正数有两个平方根,这两个平方根互为相反数;

2零只有一个平方根,它就是零本身;

3负数没有平方根

4、实数

无限不循环小数叫做无理数

有理数和无理数统称为实数

5、平方根的运算

6、算术平方根的性质

性质1一个非负数的算术平方根的平方等于这个数本身

性质2一个数的平方的算术平方根等于这个数的绝对值

7、算术平方根的乘、除运算

1)算术平方根的乘法

sqrt(a)sqrt(b)=sqrt(ab)(a=0)

2算)术平方根的除法

sqrt(a)/sqrt(b)=sqrt(a/b)(a0)

通过分子、分母同乘以一个式子把分母中的根号化去火把根号中的分母化去,叫做分母有理化

3)被开方数的每个因数的指数都小于2;(2)被开方数不含有字母我们把符合这两个条件的平方根叫做最简平方根

8算术平方根的加、减运算

如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根

9、一元二次方程及其解法

1)一元二次方程

只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程

2)特殊的一元二次方程的解法

3)一般的一元二次方程的解法配方法

用配方法解一元二次方程的一般步骤是:

1、化二次项系数为1用二次项系数去除方程两边,将方程化为_^2+p_+q=0的形式

2、移项把常数项移至方程右边,将方程化为_^2+p_=-q的形式

3、配方方程两边同时加上“一次项系数一半的平方”,是方程左边成为含有未知数的完全平方形式,右边是一个常数

4、有平方根的定义,可知

(1)当p^2/4-q0时,原方程有两个实数根;

(2)当p^2/4-q=0,原方程有两个相等的实数根(二重根);

(3)当p^2/4-q0,原方程无实根

10、一元二次方程的求根公式

一元二次方程a_^2+b_+c=0(a!=0)的求根公式:

当b^2-4ac=0时,_1,2=(-b(+,-)sqrt(b^2-4ac))/2a

11、一元二次方程根的判别式

方程a_^2+b_+c=0(a!=0)

当delta=b^2-4ac0时,有两个不相等的实数根;

当delta=b^2-4ac=0时,有两个相等的实数根;

当delta=b^2-4ac时,没有实数根

12、一元二次方程的根与系数的关系

以两个数_1,_2为根的一元二次方程(二次项系数为1)是_^2-(_1+_2)_+_1_2=0

人教版初中数学公式大全11

一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)

有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。【注】“大”减“小”是指绝对值的大小。

合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找初一。

一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

特殊点坐标特征:坐标平面点(_,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;_轴上y为0,_为0在Y轴。

象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行_轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

对称点坐标:对称点坐标要记牢,相反数位置莫混淆,_轴对称y相反,Y轴对称,_前面添负号;原点对称最好记,横纵坐标变符号。

自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

函数图像的移动规律:若把一次函数解析式写成y=k(_+0)+b、二次函数的解析式写成y=a(_+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

三角函数的增减性:正增余减

特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。

梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。

添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。

圆的'证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.

函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,_增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。

反比例函数双曲线,待定只需一个点,正k落在一三限,_增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线_、y的顺序可交换。

二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,_轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

人教版初中数学公式大全12

时间单位换算

1世纪=100年1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天,闰年2月29天

平年全年365天,闰年全年366天

1日=24小时1时=60分

1分=60秒1时=3600秒

重量单位换算

1吨=1000千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

长度单位换算

1千米=1000米1米=10分米

1分米=10厘米1米=100厘米

1厘米=10毫米

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数_倍数=大数

(或者和-小数=大数)

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本_100%=(售出价÷成本-1)_100%

涨跌金额=本金_涨跌百分比

折扣=实际售价÷原售价_100%(折扣

利息=本金_利率_时间

税后利息=本金_利率_时间_(1-20%)

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量_100%=浓度

溶液的重量_浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

追及问题

追及距离=速度差_追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

相遇问题

相遇路程=速度和_相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的.份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

植树问题

1.非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距_(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距_株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距_(株数+1)

株距=全长÷(株数+1)

2.封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距_株数

株距=全长÷株数

差倍问题

差÷(倍数-1)=小数

小数_倍数=大数

(或小数+差=大数)

小学数学图形计算公式

1.正方形C周长S面积a边长周长=边长_4C=4a面积=边长_边长S=a_a

2.正方体V:体积a:棱长表面积=棱长_棱长_6S表=a_a_6体积=棱长_棱长_棱长V=a_a_a

3.长方形C周长S面积a边长周长=(长+宽)_2C=2(a+b)面积=长_宽S=ab

4.长方体V:体积s:面积a:长b:宽h:高(1)表面积(长_宽+长_高+宽_高)_2S=2(ab+ah+bh)(2)体积=长_宽_高V=abh

5.三角形s面积a底h高面积=底_高÷2s=ah÷2三角形高=面积_2÷底三角形底=面积_2÷高

6.平行四边形s面积a底h高面积=底_高s=ah

7.梯形s面积a上底b下底h高面积=(上底+下底)_高÷2s=(a+b)_h÷2

8.圆形S面积C周长∏d=直径r=半径(1)周长=直径_∏=2_∏_半径C=∏d=2∏r(2)面积=半径_半径_∏

9.圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长_高(2)表面积=侧面积+底面积_2(3)体积=底面积_高(4)体积=侧面积÷2_半径

10.圆锥体v:体积h:高s;底面积r:底面半径体积=底面积_高÷3总数÷总份数=平均数

单位换算

(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

(4)1吨=1000千克1千克=1000克=1公斤=1市斤

(5)1公顷=10000平方米1亩=666.666平方米

(6)1升=1立方分米=1000毫升1毫升=1立方厘米

1.

每份数_份数=总数

总数÷每份数=份数

总数÷份数=每份数

2

1倍数_倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3

速度_时间=路程

路程÷速度=时间

路程÷时间=速度

4

单价_数量=总价

总价÷单价=数量

总价÷数量=单价

5

工作效率_工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6

加数+加数=和

和-一个加数=另一个加数

7

被减数-减数=差

被减数-差=减数

差+减数=被减数

8

因数_因数=积

积÷一个因数=另一个因数

9

被除数÷除数=商

被除数÷商=除数

商_除数=被除数

人教版初中数学公式大全13

梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L_h

(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

定理如果一条直线截三角形的两边(或两边的延长线)所得的.对应线段成比例,那么这条直线平行于三角形的第三边

平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

看过梯形中位线定理,聪明的同学都知道梯形的中位线平行于两底,并且等于两底和的一半了吧。

人教版初中数学公式大全14

初中数学点、线、角的定理

点的定理:过两点有且只有一条直线

点的定理:两点之间线段最短

角的定理:同角或等角的补角相等

角的定理:同角或等角的余角相等

直线定理:过一点有且只有一条直线和已知直线垂直

直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短

初中数学几何平行定理

平行定理:经过直线外一点,有且只有一条直线与这条直线平行

推论:如果两条直线都和第三条直线平行,这两条直线也互相平行

证明两直线平行定理:

同位角相等,两直线平行

内错角相等,两直线平行

同旁内角互补,两直线平行

两直线平行推论:

两直线平行,同位角相等

两直线平行,内错角相等

两直线平行,同旁内角互补

初中数学定理:三角形内角定理

定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边

三角形内角和定理:三角形三个内角的和等于180°

推论1:直角三角形的两个锐角互余

推论2:三角形的一个外角等于和它不相邻的两个内角的和

推论3:三角形的一个外角大于任何一个和它不相邻的内角

初中数学定理:全等三角形判定定理

定理:全等三角形的对应边、对应角相等

边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等

角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等

推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

边边边定理(SSS):有三边对应相等的两个三角形全等

斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

初中数学定理:角的平分线定理

定理1:在角的平分线上的点到这个角的两边的距离相等

定理2:到一个角的两边的距离相同的点,在这个角的平分线上

角的平分线是到角的`两边距离相等的所有点的集合

初中数学定理:等腰三角形性质定理

等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

推论3:等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1:三个角都相等的三角形是等边三角形

推论2有一个角等于60°的等腰三角形是等边三角形

初中数学公式定理:对称定理

定理:线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

定理1:关于某条直线对称的两个图形是全等形

定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

初中数学定理:直角三角形定理

定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半

勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

初中数学公式定理:多边形内角和定理

定理:四边形的内角和等于360°

四边形的外角和等于360°

多边形内角和定理:n边形的内角的和等于(n-2)_180°

推论:任意多边的外角和等于360°

初中数学公式定理:平行四边形定理

平行四边形性质定理1:平行四边形的对角相等

平行四边形性质定理2:平行四边形的对边相等

推论:夹在两条平行线间的平行线段相等

平行四边形性质定理3:平行四边形的对角线互相平分

平行四边形判定定理1:两组对角分别相等的四边形是平行四边形

平行四边形判定定理2:两组对边分别相等的四边形是平行四边形

平行四边形判定定理3:对角线互相平分的四边形是平行四边形

平行四边形判定定理4:一组对边平行相等的四边形是平行四边形

初中数学公式定理:矩形的定理

矩形性质定理1:矩形的四个角都是直角

矩形性质定理2:矩形的对角线相等

矩形判定定理1:有三个角是直角的四边形是矩形

矩形判定定理2:对角线相等的平行四边形是矩形

初中数学公式定理:菱形定理

菱形性质定理1:菱形的四条边都相等

菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a_b)÷2

菱形判定定理1:四边都相等的四边形是菱形

菱形判定定理2:对角线互相垂直的平行四边形是菱形

初中数学公式定理:正方形定理

正方形性质定理1:正方形的四个角都是直角,四条边都相等

正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

初中数学定理公式:中心对称定理

定理1:关于中心对称的两个图形是全等的

定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

初中数学定理:等腰梯形性质定理

等腰梯形性质定理:

1.等腰梯形在同一底上的两个角相等

2.等腰梯形的两条对角线相等

等腰梯形判定定理:

1.在同一底上的两个角相等的梯形是等腰梯形

2.对角线相等的梯形是等腰梯形

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

初中数学公式定理:中位线定理

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半

梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L_h

初中数学公式定理:相似三角形定理

相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1:两角对应相等,两三角形相似(ASA)

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)

判定定理3:三边对应成比例,两三角形相似(SSS)

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比性质定理2:相似三角形周长的比等于相似比

性质定理3:相似三角形面积的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论