韩国对外经济政策研究院(KIEP):人口结构红利和经济增长:印度的案例_第1页
韩国对外经济政策研究院(KIEP):人口结构红利和经济增长:印度的案例_第2页
韩国对外经济政策研究院(KIEP):人口结构红利和经济增长:印度的案例_第3页
韩国对外经济政策研究院(KIEP):人口结构红利和经济增长:印度的案例_第4页
韩国对外经济政策研究院(KIEP):人口结构红利和经济增长:印度的案例_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

September6,2023

Vol.13No.32

ISSN2233-9140

DemographicDividendand

EconomicGrowth:ExploringtheCaseofIndia

YoonJaeRoAssociateResearchFellow,IndiaandSouthAsiaTeam,CenterforAreaStudies(yjro@kiep.go.kr)

JiwonParkAssociateResearchFellow,EmergingCooperationAgendaTeam,CenterforInt’lDevelopmentCooperation(jiwonpark@kiep.go.kr)

I.Introduction

Indiahasemergedasthemostpopulouscoun-tryin2023,surpassingevenChina,whichwaspreviouslyknownforitshighpopulation.In-dia'sgrowingpopulationhasgeneratedcon-siderableinterest,promptingcomparisonswithChina'sdemographiclandscape.ThecomparisonbetweenIndiaandChinaholdsaninherentinterestbeyondjusttheirsheerpopu-lationsizes,asthedynamicofIndia'spopula-tiongettingyoungerwhileChina'sisgettingoldercontributessignificantlytotheongoingcontrastbetweenthesetwonations.

Therelationshipbetweenpopulationandeco-nomicperformancehasbeenanongoingtopicofresearch.Initially,thefocuswasonthesizeandgrowthrateofthepopulation.Morere-cently,however,attentionhasshiftedtoun-derstandinghowagestructureaffectseco-

nomicgrowth.Developednationsarecur-

rentlymakingstructuraladjustmentstoad-

dresstheconsequencesofdecliningfertility

ratesandagrowingelderlypopulation.Incon-

trast,manydevelopingnationsareexperienc-

inggrowthintheiryouthandworking-age

populations,offeringthepotentialforademo-

graphicdividend.Thisdividendcouldfuel

short-termeconomicexpansion.Whenthe

shareoftheyoungworking-agegroupin-

creases,itcanhaveapositiveimpacton

growthduetotheirhigherproductivityand

greatercontributiontotheeconomy.Thisde-

mographicdividendmanifestsitselfina

higherproportionofeconomicallyactiveindi-

vidualswithinthepopulation,resultingin

lowerdependencyratiosandhighereconomic

growthrates.

September6,2023

2

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

ThisstudylooksatIndia'ssituation.India'spopulationhasbeenchanging,includinghowmanypeoplethereare,howfastthepopulationisgrowing,andhowoldthepeopleare.ThenumberofpeopleinIndiahasgrownquickly,from446millionin1960toabout1.42billionin2022.

1

It'sprojectedtoreach1.7billionby2060.

2

Theageofthepopulationisalsochanging.India'sagegroupshavebeenchang-ingforthepast50years.Currently,about26%ofthepeopleinIndiaareunder15yearsold,about68%arebetween15and64yearsold(workingage),andabout7%are65orolder.By2050,thesefiguresareexpectedtochangeto18%,67%,and15%,respectively.

3

Inthiscontext,thispaperexamineshowchangesinthepopulationwillaffectIndia'seconomy.Specifically,weexaminehowshiftsinagedistributionaffectIndia'seconomicdrivers.

Since1990,numerousstudieshaveexploredtheconnectionbetweenpopulationchangeandeconomicgrowth.Theconvergencegrowthmodel,whichincorporatesdemo-graphictransition,aidsintheeconomicgrowthanalysis.

4

Thedemographictransitionwillreshapethelaborforce,impactingthela-bormarketandindustrystructureovertime.Indiahasasubstantialyounglaborforce,withabout67%ofthepopulationintheworkingagecategory.Weexaminehowthegrowthof

1WorldBankDataPortal(accessedAugust15,2023)2UN,WorldPopulationProspects2022.

3WorldBankDataPortal(accessedAugust15,2023)4BloomandWilliamson(1998)demonstratedhowit boostedEastAsianeconomiesin1965-1990via workforceexpansion.BloomandCanning(2004) foundthesamepositivelinkacrosscountries.CaseslikeBloom,Canning,andMalaney(2000)andMason

thisworkingagepopulationaffectsIndia's

economicgrowthandlabormarket,using

state-leveldata.SeveralpapersexploreIndia's

demographicdividendimpact,likeAiyarand

Mody(2011),Kumar(2014),andLadusingh

andNarayana(2012),focusingonIndia'seco-

nomicbenefits.Mostimportantly,Aiyarand

Mody(2011),analyzeIndia'sNationalSample

Survey(NSS)dataandfindthata1%increase

inpopulationleadstoa0.2percentagepoint

riseinpercapitaincome.Despiteexistingre-

search,agappersistsinunderstandingIndia's

potentialdemographicdividend.Priorstudies,

likethosementioned,focusedontheopportu-

nitiestiedtodemographicshiftsuntilaround

2000.AiyarandMody(2011)exploredpopu-

lation-economicgrowthlinkusing1980-2001

data,andotherstudiesfollowedsuitwithearly

2000sdata.Thislimitationstemsfromthe

scarcityofrecentdata.TheNationalSample

Survey(NSS)wasdiscontinuedafter2011-

2012,andthelatestcensuswasin2011,which

wasdelayedto2020duetoCovid-19.Thispa-

perextendsthescopeofthestudytoinclude

dataupto2019,achievedbymergingtwoda-

tasetswiththemostrecentinformation.Fur-

thermore,ouranalysisencompassesdiverse

economicdimensionswithinIndia.Inaddition

toexamininggrowthinpercapitaGDPatthe

statelevel,wedelveintotheshiftsinemploy-

(2001)attributedtheEastAsiansuccesstopopula-

tion.Persson(1999)linkedagecompositiontoUSper-

formance.Feyrer(2007)foundarelationshipbetween

workerageandproductivityusingOECDanddevelop-

ingcountrydata,explaining25%oftheOECD-low-in-

comeproductivitydifferenceandthedivergencedur-

ingthe1960-1990period.Kδgel(2005)linkedthe

youthdependencyratiotolowproductivitygrowth.

3

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

mentpatternsacrosssectorsandthevalueaddedbydifferentsectors.

Theremainderofthearticleisorganizedasfollows.SectionIIoutlinesdataandmethod-ology.SectionIIIestimatesthedemographicdividendacrossIndianstatesduringthe1999–2019period.SectionIVconcludes.

II.EmpiricalStrategy

Weusethedevelopmentaccountingframe-workasatooltoexploretherelationshipbe-tweendemographiccharacteristicsandpercapitaoutputinIndia.Oneofthefundamentaltenetsofthedevelopmentaccountingframe-workisthatthedemographicagestructureplaysapivotalroleinshapingpercapitaout-putbyinfluencingbothfactoraccumulationandefficiency(HallandJones1999;Caselli2005;HsiehandKlenow2010).Multiplethe-oreticalpathwaysdemonstratehowtheagestructuresignificantlyinfluencespercapitaoutputbyinfluencingbothfactoraccumula-tionandefficiency.First,theagestructureim-pactsaggregatesavingrates,drivenbyhetero-geneoussavingbehavioracrossagegroupsinlinewiththelifecyclehypothesis.Second,theemploymentrateisprofoundlyaffectedbytheagestructureduetotheheterogeneityinlaborsupplyobservedacrossdistinctagegroups.Fi-nally,theheterogeneityineducationandex-periencelevelsamongdifferentagegroupsisassociatedwiththeaveragehumancapitalofthelaborforce,therebyfurtheraffectingpercapitaoutput.

Toanalyzetheinteractionbetweendemo-

graphicstructureandeconomicgrowth,we

usethefollowingmodel:

logyit=Ditβ+μi+τt+εit(1)

Here,yitrepresentstheeconomicstatusof

stateiinyeart,Ditdenotestheexplana-

toryvariablerelatedtodemographicstructure,

andμi,τtstandforstateandyearfixedef-

fects,respectively.Theerrortermisdenoted

asεit.

Animportantconsiderationintheaboveanal-

ysisistheselectionofappropriatedemo-

graphicvariables.Includingalargenumberof

agegroupsintheregressioncouldleadtomul-

ticollinearityissues,whichcouldhinderob-

tainingthedesiredresults.Therefore,itiscru-

cialtometiculouslychoosetheoptimalsubset

ofagestructurevariablestouncoverthegenu-

inerelationshipbetweendemographicstruc-

tureandeconomicgrowth.Followingthe

methodologyoutlinedbyGomezandDeCos

(2008)andZhang,Zhang,andZhang(2015),

weincludetwocrucialvariables:theshareof

theworking-agepopulationandtheshareof

prime-ageindividualswithintheworking-age

group.Forthepurposeofthisstudy,wedefine

theworking-agepopulationasindividuals

aged15to64,andtheprime-agepopulationas

thoseaged30to49.

Theregressionmodelcombiningthetwopa-

persisasfollows:

logyit=γlogwit+δpit+λcit

+θxit+μi+τt+εit(2)

4

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

witrepresentstheproportionofthework-ing-agepopulation,whilepitdenotestheshareofprime-ageindividualswithintheworking-agepopulation.xitincorporatestwocriticalcontrolvariables:laborcost,whichincludesbothwageandassociatedcosts,andstate-levelelectricitysupply,servingasaproxyfortheproductioncapacity.Addition-ally,citreflectstheproportionofcollege-ed-ucatedindividualswithintheworking-agepopulation,capturingtheinfluenceofhigh-ed-ucatedworkersoneconomicgrowth.Forthedependentvariables,weusetotalstateproduc-tionpercapita,sectoralvalue-added,andsec-toralemploymentrate.

III.Data

1.PopulationandLaborMarketData

Thedemographicandemploymentdataatthestatelevelaredrawnfromacollectionofma-jordatasets.Firstly,weusetheEmploymentandUnemploymentSurveys(EUS)conductedbytheNationalSampleSurveys(NSS).Initi-atedin1950,theNSSisacomprehensivena-tionwidesurveydesignedtocovervariousso-cio-economicaspectsofthecountry'spopula-tion.Thesurveyaimstoprovidereliableandup-to-dateinformationonawiderangeoftop-ics,includingincome,employment,education,health,consumption,housing,andmore.TheEmploymentandUnemploymentsurveysare

conductedaspartofspecificrounds,withir-

regularfrequency.Inthispaper,weutilize

datafromthe55th(1999)and66th(2009)

roundsoftheEUStoexamineIndia’slabor

marketdynamicspost-2000.Duetothecessa-

tionoftheEmploymentandUnemployment

SurveybytheNSSOfficein2012,wesupple-

mentourdatasetwiththeConsumerPyramids

HouseholdSurvey(CPHS)conductedbythe

CenterforMonitoringIndianEconomy

(CMIE).CPHSisoneofthelargesthousehold

panelsurveysinIndia,followingover170,000

householdseachyeartoprovideinformation

onconsumerspending,income,employment,

education,andothersocioeconomicindicators.

Ouranalysisfocusesontheroundconducted

in2019.

5

Thetwosurveysdonotprovideweightsto

preciselyestimatethetotalpopulation.Toes-

timatethecountofindividualsemployedin

eachsectorandstate,wederivethesector-

wisepopulationdistributionwithineachstate

usingsurveydata.Thisshareisthenmulti-

pliedbythestate-level(estimated)population

forthecorrespondingyear,sourcedfromthe

CEICGlobalDatabase.Thenumberofwork-

ingage(15-64)andprimeage(30-49)ineach

stateisalsoestimatedusingthesharederived

fromourdatasetandthestate-levelpopulation

figuresfromtheCEIC.

Indiahasundergonesignificantchangesinits

administrativeboundariessincetheyear2000.

5OtherroundsofEUSandCPHSareusedtocalculatethetrendsoftotalpopulationandagestructureofIn-

dia.

5

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

Notableinstancesincludethecreationofthreenewstatesin2000:Chhattisgarh,Jharkhand,andUttarakhand,whichemergedasdistinctentitiesfromMadhyaPradesh,Bihar,andUt-tarPradeshrespectively.In2014,TelanganawasestablishedthroughthebifurcationofAn-dhraPradesh.Additionally,in2019,JammuandKashmirunderwentareorganization,leadingtotheformationoftwoseparateterri-tories:JammuandKashmir,andLadakh.TheNSSandCPHSdataarealignedwiththead-ministrativeboundariesinthecorrespondingyears.Toensuredatacomparabilityovertime,wecombineUttarPradeshandUttarakhand,BiharandJharkhand,andMadhyaPradeshandChhattisgarh,basedontheadministrativeboundariesexistingin1999.

It'sworthnotingthattheCPHSdoesnotinclude

certainsmallerborderstatesandUnionTerrito-

ries(UTs)locatedinthenortheast,specificis-

lands,andasinglesmallmainlandUT.Theseex-

cludedregionsconsistofstatessuchasAruna-

chalPradesh,Manipur,Meghalaya,Mizoram,

Nagaland,Sikkim,andTripura,aswellasUTs

likeAndamanandNicobarIslands,Dadraand

NagarHaveliandDamanandDiu,Ladakh,and

Lakshadweep.Thisexclusionmarginallyim-

pactsthesurvey'srepresentativenessbecause,

collectively,thesestatesandUTsaccountfor

only1.5%oftheIndia’stotalpopulation(Vyas

2020).Notably,JammuandKashmir,account-

ingfor1.01%ofthepopulation,isalsonotin-

cludedinoursample.Asaresult,ourfinalsam-

pleincludes14stategroups.

Table1.NSSvsCPHSComparisons

NSS

CPHS

All

Y=1999

Y=2004Y=2009

Y=2011

Y=2014Y=2017

(1)

(2)

(3)(4)

(5)

(6)(7)

Age

27.73

25.53

26.4027.66

28.08

29.8831.92

[18.96]

[18.85]

[18.96][19.00]

[19.08]

[18.57][18.53]

Male

0.52

0.51

0.510.52

0.51

0.530.53

[0.50]

[0.50]

[0.50][0.50]

[0.50]

[0.50][0.50]

Hindu

0.83

0.82

0.820.82

0.81

0.840.86

[0.38]

[0.38]

[0.39][0.38]

[0.39]

[0.37][0.35]

Muslim

0.12

0.12

0.130.13

0.14

0.100.11

[0.33]

[0.33]

[0.33][0.33]

[0.35]

[0.30][0.31]

SC/ST

0.29

0.29

0.280.29

0.28

0.300.32

[0.45]

[0.45]

[0.45][0.45]

[0.45]

[0.46][0.46]

HighSchool

0.11

0.07

0.090.12

0.13

0.140.17

[0.31]

[0.25]

[0.28][0.32]

[0.34]

[0.35][0.38]

Observation

3,273,902

595,529

602,832459,784

456,999

633,288525,470

6

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

2.State-levelProductandValue-addedData

WeemploythetotalNetStateDomesticProduct(NSDP)andthesectoralNetStateValue-AddedprovidedbytheReserveBankofIndia(RBI)todepictboththeoverallandsectoraleconomicgrowthatthestatelevel.

Thesevaluesarepresentedinrealterms;how-ever,it'simportanttonotethatthereferenceyearchangesfrom2004to2011.Tomakethedatacompatibleoverdifferenttimeperiods,westandardizetherealNSDPandvalue-addedfiguresin2011rupees.Wealsodividethefiguresbythestate-leveltotalpopulationfromCEICtoacquireper-capitavalues.Theeconomicdataatthestatelevelareaggregatedintothe14stategroupstomatchthedemo-graphicdata.

3.SummaryStatistics

Figure1illustratestherisingproportionofworking-agepeopleintheoverallpopulation,alongwiththeshareofprime-ageindividualswithintheworking-agepopulationinourdata.Theworking-agepopulationratiowas56%in1984,butithasdemonstratedrapidgrowth,reaching61%in1999andfurthersurgingto65%in2009.Notably,thisratiohassurpassed75%inboth2017and2019,particularlyintheyearsusingCPHSdata.ThisdeviationislikelyattributabletoCPHS'sinclinationtooversampletheworking-agegroupincompar-isontoNSS.Simultaneously,theshareofprime-ageindividualswithintheworking-age

demographichasexhibitedconsistentgrowth,

expandingfrom38%in1984to42%in2017.

Whencomparing2011and2017,thereisno

pronouncedjumpsimilartothesurgeob-

servedintheworking-ageproportion.This

suggeststhattheCPHSismorecompatible

whenfocusingontheworking-agepopulation.

Table2illustrateschangesinworking-ageand

prime-agepopulationproportionsacrossstate

groupsduring1999-2009and2009-2019.All

statessawpositiveshiftsinworking-agepopu-

lationsincolumns1-2,withlargerchangesin

2009-2019.For1999-2009,theaveragechange

was4.25percentagepoints,withamaximumof

8points.Incontrast,thelaterperiodaveraged

8.7points,withamaximumof17.Changesin

prime-ageproportionswithinworking-age

populationsvariedmoreacrossstatesthan

thoseincolumns1-2.For1999-2009,theaver-

agechangewas2points;for2009-2019,theav-

eragechangewas0.06points.

Thetablehighlightstwomaininsights.

Firstly,whiletheworking-agepopulationis

growinginallcountries,differentchangesin

theprimeageshareleadtovariationsinage

structure,potentiallyaffectingthedemo-

graphicdividend.Secondly,anincreaseinthe

prime-agepopulationdoesn'tnecessarily

translateintoacorrespondingriseinworking-

agepopulation.Forinstance,inRajasthanand

UttarPradesh,wherethereweresignificant

shiftsinworking-agesharesduring2009-2019,

theprime-ageshareoftheworkingagepro-

portionactuallydeclined.

7

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

Figure1.TheProportionofWorkingAgeandPrimeAgePopulation

Source:Roetal.(2022).

Table2.ChangeinWorking-AgePopulation

ChangeinWorkingAgePopulation(p.p)

ChangeinPrimeAgePopulationwithin

WorkingAgePopulation(p.p)

1999~2009

(1)

2009~2019

(2)

1999~2009

(3)

2009~2019

(4)

Punjab

6.15

11.99

-0.29

-1.28

Delhi

4.89

3.98

2.80

-3.49

Rajasthan

4.57

17.47

0.84

-0.27

UttarPradesh,Uttarakhand

4.66

14.47

1.17

-1.38

Bihar,Jharkhand

3.26

12.58

1.83

-0.62

WestBengal

5.68

5.25

1.11

-1.26

Odisha

5.42

6.97

2.81

0.28

MadhyaPradesh,Chhattisgarh

5.59

13.81

1.68

0.83

Gujarat

2.51

8.49

1.10

-0.72

Maharashtra

4.93

8.03

-0.24

0.27

AndhraPradesh

5.20

11.15

1.89

5.25

Karnataka

4.72

12.44

0.69

5.04

Kerala

0.79

6.86

1.51

-0.48

TamilNadu

1.89

7.08

3.26

-3.16

8

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

IV.Results

Table3presentsanalysisresultsonIndia'sdemographicimpactonstatedomesticproductpercapita.Theanalysisincludeshouseholdandyearfixedeffects.Columns(2)and(3)de-tailresultswithstatecharacteristicsandcol-legegraduateratioasexplanatoryvariables.Controlvariablescompriselaborcostsidenti-fyingstatelabormarketsandpowersupplyca-pacityrepresentingproductionenvironment.

Theproportionofstatecollegegraduatesisin-cludedtocontrolhigh-skilledimpact.Inthecomprehensiveanalysisshownincolumn(3),findingsindicatenoeffectofincreasedpro-ductiveandcoreworkingpopulationpropor-tionsonpercapitaeconomicgrowth.Con-versely,ariseinhigh-skilledworkerpropor-tionpositivelyaffectspercapitaoutput.

PreviousstudieshavefoundthatIndia'sin-

creaseintheproportionoftheworking-age

populationhasa"demographicdividendef-

fect"thatpromoteseconomicgrowth,butthis

studyhasshownthatsucheffectdoesnotexist.

Thereisareasonwhytheresultsofthisstudy

differfromAiyarandMody(2011),whocal-

culatedtheincreaseintheproportionofthe

working-agepopulationeverydecadefrom

1980to2001usingIndia'sNSSdata.India's

populationgrowthratebegantodeclineafter

the1980s.India'saverageannualpopulation

growthratehasfallenfrom2.3%tolessthan

2%sincethe1990s.Whencalculatingthe10-

yearpopulationgrowthratebystate,itcanbe

seenthatthegrowthratehasdeclinedsignifi-

cantlysincethe1990s.Therefore,itcanbein-

terpretedthatthedemographicdividendeffect

hadnotbeenfoundinthisstudyusingrela-

tivelyrecentdata,comparedtotheanalysisof

datafromtheperiodwhentheexistingexplo-

sivepopulationgrowthrateoccurred.

Table3.PopulationChangeandEconomicOutput

(1)

(2)

(3)

W

-0.124

0.0882

-0.189

(0.692)

(0.828)

(0.696)

P

0.709

(1.197)

0.0133

(1.335)

0.286

(1.023)

C

3.498***

(0.995)

Observations

79

79

79

R-squared

0.976

0.978

0.982

Control

YES

YES

9

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

Table4.PopulationChangeandSectoralValueAdded

(1)

Agriculture

(2)

Manufacturing

(3)

Construction

(4)

Services

W

0.282

-0.283

-0.805

-0.567

(0.931)

(1.451)

(0.752)

(0.462)

P

5.559**

(2.165)

-2.472*

(1.338)

1.931

(1.351)

4.455***

(1.153)

C

-0.382

(2.513)

5.821***

(2.079)

1.949

(1.581)

3.551***

(1.154)

Observations

79

79

79

79

R-squared

0.904

0.970

0.954

0.983

Control

YES

YES

YES

YES

TheanalysisexaminedhowchangesinIn-dia'sdemographicstructureimpactedoutputintheindustrysector.Demographicshiftshadnoinfluenceonpercapitaoutput,butsignifi-cantsectoralresultsemerged.Consistentwithpreviousfindings,anincreaseintheproduc-tivepopulationdidn'tsignificantlyalterindus-tryvalue-added.However,anincreaseinthecoreageshareenhancedvalueaddedinagri-culturalandservices.A1%pincreaseintheproductivepopulationtransitioningtothecoreageincreasedagriculturalandserviceaddedvalueperpersonby5.60%and4.46%,respec-tively.Moreover,ahigherproportionofcol-legegraduateswascorrelatedwithhigherpercapitavalueaddedinmanufacturingandser-vices.

Duetotheexpectedimpactofchangesinde-mographicstructureonindustriesintermsofemployment,anadditionalempiricalinvesti-gationwasconductedontheproportionofin-dustry-wiseemploymentinthetotaleconomy.

Thisemploymentratioperindustryisthe

numberofemployeesinagivenindustrydi-

videdbythetotalnumberofemployeeswithin

astate.AsshowninTable5,itwasfoundthat

theincreaseintheratioofthecoreagepopu-

lationhadapositiveeffectontheemployment

oftheservicesector.Specifically,ifthereisa

1percentagepointincreaseintheproportion

oftheworking-agepopulationtransitioning

fromanon-coreagetoacoreage,theemploy-

mentwithintheserviceindustrygrowsby5.18%

Analyzingtheresultsofthepreviouschange

inthevalue-addedratio,itcanbeseenthatthe

increaseinthecoreageratiotendstoincrease

thevalue-addedpercapitaofagriculture,

whiletheemploymentratio(althoughnotsta-

tisticallysignificant)inagriculturetendstode-

crease.Thiscanbeinterpretedasaresultof

theincreaseinpercapitaproductionduetothe

developmentofagriculturaltechnologyand

theincreaseintheskillsofagriculturalwork-

ers.

10

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

Table5.PopulationChangeandSectoralEmployment

(1)

Agriculture

(2)

Manufacturing

(3)

Construction

(4)

Services

W

2.489

-1.047

-0.306

1.354

(2.417)

(2.312)

(1.476)

(1.266)

P

-4.443

(4.549)

0.271

(3.436)

-1.820

(2.729)

5.181**

(1.989)

cs_N2

-7.199

(6.208)

2.980

(5.163)

0.826

(6.094)

0.790

(2.608)

Observations

78

79

79

79

R-squared

0.470

0.593

0.687

0.535

Control

YES

YES

YES

YES

V.Conclusions

Inconclusion,thispaperhasexaminedthepo-tentialforIndia'sgrowingyouthandworking-agepopulationtostimulateshort-termeco-nomicexpansion.Byanalyzingstate-leveldatafrom1999-2019,wehavefoundevidenceofademographicdividendinIndia,withagrowingworking-agepopulationcontributingtoincreasedeconomicoutput.Thisdemo-graphicdividendcomesprimarilyfromtheprimeagepopulation,whichisdefinedasthoseaged30-49yearsold,andisconcen-tratedincertainsectorssuchasagricultureandservices.Thefindingsofthisstudyarecon-

sistentwithpriorresearchonIndia’sdemo-

graphicdividendandsuggestthatthecountry

iswellpositionedtobenefitfromitsyouthful

population.However,itisimportanttonote

thatsustainingthisgrowthwillrequirecontin-

uedinvestmentineducationandinfrastructure,

aswellaspoliciesthatpromoteinclusive

growthandaddressissuesofinequalityand

socialexclusion.Overall,thepotentialfora

demographicdividendinIndiaisanexciting

development,andonethatpolicymakers

shouldtakemoreseriously.Byinvestingin

educationandinfrastructure,andpromoting

inclusivegrowth,Indiacancontinuetobuild

onitseconomicsuccessesandbecomeamajor

playerintheglobaleconomy.

11

DemographicDividendandEconomicGrowth:ExploringtheCaseofIndia

References

Aiyar,S.andA.Mody.2011.“Thedemographicdividend:EvidencefromtheIndianstates.”IMFWorkingPaper,no.WP/11/38.InternationalMonetaryFund.

Bloom,D.E.andD.Canning.2004.“Globaldemographiccha

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论