2024届四川省眉山市丹棱县数学九年级第一学期期末检测模拟试题含解析_第1页
2024届四川省眉山市丹棱县数学九年级第一学期期末检测模拟试题含解析_第2页
2024届四川省眉山市丹棱县数学九年级第一学期期末检测模拟试题含解析_第3页
2024届四川省眉山市丹棱县数学九年级第一学期期末检测模拟试题含解析_第4页
2024届四川省眉山市丹棱县数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省眉山市丹棱县数学九年级第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.的值为()A. B. C. D.2.已知线段a是线段b,c的比例中项,则下列式子一定成立的是()A. B. C. D.3.把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式是()A. B.C. D.4.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.有一组邻边相等、一个角是直角的四边形是正方形5.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则的度数为()A.24° B.56° C.66° D.76°6.如图,BA=BC,∠ABC=80°,将△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,连接DE,则∠BED为()A.50° B.55° C.60° D.65°7.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A. B. C. D.8.如图,是的外接圆,是直径.若,则等于()A. B. C. D.9.如图,在△ABC中,D、E分别是BC、AC上的点,且DE∥AB,若S△CDE:S△BDE=1:3,则S△CDE:S△ABE=()A.1:9 B.1:12C.1:16 D.1:2010.给出下列函数,其中y随x的增大而减小的函数是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④ B.②③④ C.②④ D.②③11.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=95012.二次函数y=x2-2x+4A.y=(x-1)2C.y=(x-2)2二、填空题(每题4分,共24分)13.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.14.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是_____.15.如图,在平面直角坐标系中,,P是经过O,A,B三点的圆上的一个动点(P与O,B两点不重合),则__________°,__________°.16.如图,在四边形中,,,,点为边上一点,连接.,与交于点,且,若,,则的长为_______________.17.如图,用长的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是___________.(中间横框所占的面积忽略不计)18.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.三、解答题(共78分)19.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.20.(8分)(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在中,,是外一点,且,求的度数.若以点为圆心,为半径作辅助,则、必在上,是的圆心角,而是圆周角,从而可容易得到=________.(2)(问题解决)如图2,在四边形中,,,求的度数.(3)(问题拓展)如图3,是正方形的边上两个动点,满足.连接交于点,连接交于点,连接交于点,若正方形的边长为2,则线段长度的最小值是_______.21.(8分)在平面直角坐标系中,已知,.(1)如图1,求的值.(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.①当恰好落在的延长线上时,如图2,求出点、的坐标.②若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.22.(10分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.23.(10分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)24.(10分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.25.(12分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.26.已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.(1)求,的值;(2)求二次函数图象的对称轴和顶点坐标.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据特殊角的三角函数值解答即可.【题目详解】tan60°=,故选C.【题目点拨】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.2、B【解题分析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.【题目详解】A选项,由得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【题目点拨】本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.3、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【题目详解】把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式:故选:D【题目点拨】本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式.4、D【分析】利用正方形的判定方法分别判断得出即可.【题目详解】A、一组邻边相等的矩形是正方形,说法正确,不合题意;B、对角线互相垂直的矩形是正方形,说法正确,不合题意;C、对角线相等的菱形是正方形,说法正确,不合题意;D、有一组邻边相等、一个角是直角的平行四边形是正方形,原说法错误,符合题意;故选:D.【题目点拨】本题考查了正方形的判定问题,掌握正方形的性质以及判定定理是解题的关键.5、C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【题目详解】∵AB是⊙O的直径∴∵∠BAD=24°∴又∵∴=66°故答案为:C.【题目点拨】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°6、A【分析】首先根据旋转的性质,得出∠CBD=∠ABE,BD=BE;其次结合图形,由等量代换,得∠EBD=∠ABC;最后根据等腰三角形的性质,得出∠BED=∠BDE,利用三角形内角和定理求解即可.【题目详解】∵△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故选:A.【题目点拨】本题主要考查了旋转的性质、等腰三角形的性质,以及三角形内角和定理.解题的关键是根据旋转的性质得出旋转前后的对应角、对应边分别相等,利用等腰三角形的性质得出“等边对等角”,再结合三角形内角和定理,即可得解.7、B【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【题目详解】连接OB和AC交于点D,如图所示:

∵圆的半径为4,

∴OB=OA=OC=4,

又四边形OABC是菱形,

∴OB⊥AC,OD=OB=2,

在Rt△COD中利用勾股定理可知:CD=,∵sin∠COD=∴∠COD=60°,∠AOC=2∠COD=120°,

∴S菱形ABCO=,∴S扇形=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=.故选B.【题目点拨】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=.8、C【解题分析】根据同弧所对的圆周角等于圆心角的一半可得:∠A=

∠BOC=40°.【题目详解】∵∠BOC=80°,

∴∠A=∠BOC=40°.

故选C.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、B【分析】由S△CDE:S△BDE=1:3得CD:BD=1:3,进而得到CD:BC=1:4,然后根据DE∥AB可得△CDE∽△CAB,利用相似三角形的性质得到,然后根据面积和差可求得答案.【题目详解】解:过点H作EH⊥BC交BC于点H,∵S△CDE:S△BDE=1:3,∴CD:BD=1:3,∴CD:BC=1:4,∵DE∥AB,∴△CDE∽△CBA,∴,∵S△ABC=S△CDE+S△BDE+S△ABE,∴S△CDE:S△ABE=1:12,故选:B.【题目点拨】本题综合考查相似三角形的判定与性质,三角形的面积等知识,解题关键是掌握相似三角形的判定与性质.10、D【解题分析】分别根据一次函数、二次函数及反比例函数的增减性进行解答即可【题目详解】解:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;

②∵y=-2x+1中k=-2<0,∴y随x的增大而减小,故本小题正确;

③∵y=(x<0)中k=2>0,∴x<0时,y随x的增大而减小,故本小题正确;

④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.

故选D.【题目点拨】本题考查的是反比例函数的性质,熟知一次函数、二次函数及反比例函数的增减性是解答此题的关键.11、D【解题分析】设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选D.12、B【解题分析】试题分析:设原正方形的边长为xm,依题意有:(x﹣1)(x﹣2)=18,故选C.考点:由实际问题抽象出一元二次方程.二、填空题(每题4分,共24分)13、-1【解题分析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±1,再根据反比例函数在第二象限有图象即可得出k=﹣1,此题得解.【题目详解】∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±1.又∵反比例函数在第二象限有图象,∴k=﹣1.故答案为﹣1.【题目点拨】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.14、﹣<a<【分析】根据题意可以知道抛物线与线段AB有一个交点,根据抛物线对称轴及其与y轴的交点即可求解.【题目详解】解:由题意可知:∵点A、B坐标分别为(0,1),(6,1),∴线段AB的解析式为y=1.机器人沿抛物线y=ax2﹣1ax﹣5a运动.抛物线对称轴方程为:x=2,机器人在运动过程中只触发一次报警,所以抛物线与线段y=1只有一个交点.所以抛物线经过点A下方.∴﹣5a<1解得a>﹣.1=ax2﹣1ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合题意,舍去),a2=.当抛物线恰好经过点B时,即当x=6,y=1时,36a﹣21a﹣5a=1,解得a=综上:a的取值范围是﹣<a<【题目点拨】本题考查二次函数的应用,关键在于熟悉二次函数的性质,结合图形灵活运用.15、4545或135【分析】易证△OAB是等腰直角三角形,据此即可求得∠OAB的度数,然后分当P在弦OB所对的优弧上和在弦OB所对的劣弧上,两种情况进行讨论,利用圆周角定理求解.【题目详解】解:∵O(0,0)、A(0,2)、B(2,0),

∴OA=2,OB=2,

∴△OAB是等腰直角三角形.

∴∠OAB=45°,

当P在弦OB所对的优弧上时,∠OPB=∠OAB=45°,

当P在弦OB所对的劣弧上时,∠OPB=180°-∠OAB=135°.

故答案是:45°,45°或135°.【题目点拨】本题考查了圆周角定理,正确理解应分两种情况进行讨论是关键.16、【解题分析】由,知点A,C都在BD的垂直平分线上,因此,可连接交于点,易证是等边三角形,是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC的长度,应用勾股定理可求解.【题目详解】解:如图,连接交于点∵,,,∴垂直平分,是等边三角形∴,,∵∴,∴∴∴∵∴是等边三角形∴∴,∴∴【题目点拨】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.17、【分析】设窗的高度为xm,宽为m,根据矩形面积公式列出二次函数求函数值的最大值即可.【题目详解】解:设窗的高度为xm,宽为.所以,即,当x=2m时,S最大值为.故答案为:.【题目点拨】本题考查二次函数的应用.能熟练将二次函数化为顶点式,并据此求出函数的最值是解决此题的关键.18、.【分析】连接OB,根据垂径定理和勾股定理即可求出OB,从而求出EC,再根据勾股定理即可求出BC,根据三线合一即可求出BF,最后再利用勾股定理即可求出OF.【题目详解】连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm则EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案为.【题目点拨】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.三、解答题(共78分)19、⊙O的半径为.【解题分析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【题目详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【题目点拨】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20、(1)45;(2)25°;(3)【解题分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【题目详解】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD=,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD−OH=−1.【题目点拨】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.21、(1);(2)①,②;(3)【解题分析】(1)作AH⊥OB,根据正弦的定义即可求解;(2)作MC⊥OB,先求出直线AB解析式,根据等腰三角形的性质及三角函数的定义求出M点坐标,根据MN∥OB,求出N点坐标;(3)由于点C是定点,点P随△ABO旋转时的运动轨迹是以B为圆心,BP长为半径的圆,故根据点和圆的位置关系可知,当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长.又因为BP的长因点D运动而改变,可先求BP长度的范围.由垂线段最短可知,当BP垂直MN时,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以点P与M重合时,BP=BM最长,代入CP=BP+BC求CP的最大值.【题目详解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH=∴==(2)由(1)得A(3,4),又求得直线AB的解析式为:y=∵旋转,∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×=即M点的纵坐标为,代入直线AB得x=∴,∵∠NMB=∠AOB=∠ABO∴MN∥OB,又MN=AB=5,则+5=∴(3)连接BP∵点D为线段OA上的动点,OA的对应边为MN∴点P为线段MN上的动点∴点P的运动轨迹是以B为圆心,BP长为半径的圆∵C在OB上,且CB=OB=3∴当点P在线段OB上时,CP=BP−BC最短;当点P在线段OB延长线上时,CP=BP+BC最长如图3,当BP⊥MN时,BP最短∵S△NBM=S△ABO,MN=OA=5∴MN⋅BP=OB⋅yA∴BP===∴CP最小值=−3=当点P与M重合时,BP最大,BP=BM=OB=6∴CP最大值=6+3=9∴线段CP长的取值范围为.【题目点拨】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用、旋转的性质、三角函数的应用.22、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,

(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【题目详解】解:(1)根据题意得:

k=-1×1=-4,

即反比例函数的解析式为,解得:

m=4,n=-1,

即点A(-1,4),点C(4,-1),

把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,

(1)把x=0代入y=-x+3得:y=3,

即点D(0,3),

点A到y轴的距离为1,点C到y轴的距离为4,

S△PAD=×PD×1=PD,

S△PCD=×PD×4=1PD,

S△PAC=S△PAD+S△PCD=PD=5,

PD=1,

∵点D(0,3),

∴点P的坐标为(0,1)或(0,5).【题目点拨】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.23、(1)无人机的高约为19m;(2)无人机的平均速度约为5米/秒或26米/秒【分析】(1)如图,过点作,垂足为点,设,则.解直角三角形即可得到结论;(2)过点作,垂足为点,解直角三角形即可得到结论.【题目详解】解:(1)如图,过点作,垂足为点.∵,∴.设,则.∵在Rt△ACH中,,∴.∴.解得:∴.答:计算得到的无人机的高约为19m.(2)过点F作,垂足为点.在Rt△AGF中,.FG=CH=18,∴.又.∴或.答:计算得到的无人机的平均速度约为5米/秒或26米/秒.【题目点拨】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24、(1)证明见解析(2)2【解题分析】试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的外角性质得出即可得出由得:,得出由圆周角定理得出是直径,由勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论