版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省娄底市名校2024届九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A. B. C. D.2.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④3.如图,是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是直线x=1对于下列说法:①abc<0;②2a+b=0;③3a+c>0;④当﹣1<x<3时,y>0;⑤a+b>m(am+b)(m≠1),其中正确有()A.1个 B.2个 C.3个 D.4个4.已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y25.如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形,连结,则对角线的最小值为()A. B. C. D.6.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大7.某中学组织初三学生足球比赛,以班为单位,每两班之间都比赛一场,计划安排场比赛,则参加比赛的班级有()A.个 B.个 C.个 D.个8.抛物线与y轴的交点为()A. B. C. D.9.已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm210.下列关于x的一元二次方程,有两个不相等的实数根的方程的是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x-3=011.对于抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标12.已知一条抛物线的表达式为,则将该抛物线先向右平移个单位长度,再向上平移个单位长度,得到的新抛物线的表达式为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.14.如图,在直角坐标系中,已知点,,,,对述续作旋转变换,依次得、、、...,则的直角顶点的坐标为________.15.已知直线y=kx(k≠0)与反比例函数y=﹣的图象交于点A(x₁,y₁),B(x₂,y₂)则2x₁y₂+x₂y₁的值是_____.16.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.17.写出一个具有性质“在每个象限内y随x的增大而减小”的反比例函数的表达式为________.18.已知是关于的一元二次方程的两个实数根,则=____.三、解答题(共78分)19.(8分)已知y是x的反比例函数,且当时,.(1)求y关于x的函数解析式;(2)当时,求y的值.20.(8分)如图,⊙为的外接圆,,过点的切线与的延长线交于点,交于点,.(1)判断与的位置关系,并说明理由;(2)若,求的长.21.(8分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.22.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.(10分)已知抛物线y=2x2-12x+13(1)当x为何值时,y有最小值,最小值是多少?(2)当x为何值时,y随x的增大而减小(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式24.(10分)如图,已知点是外一点,直线与相切于点,直线分别交于点、,,交于点.(1)求证:;(2)当的半径为,时,求的长.25.(12分)先化简,再求值:·,其中满足26.为了测量山坡上的电线杆的高度,数学兴趣小组带上测角器和皮尺来到山脚下,他们在处测得信号塔顶端的仰角是,信号塔底端点的仰角为,沿水平地面向前走100米到处,测得信号塔顶端的仰角是,求信号塔的高度.(结果保留整数)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【题目详解】从上面看,是正方形右边有一条斜线,如图:故选B.【题目点拨】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.2、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【题目详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【题目点拨】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.3、C【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴判定b与1的关系以及2a+b=1;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>1.【题目详解】解:①∵对称轴在y轴右侧,且抛物线与y轴交点在y轴正半轴,∴a、b异号,c>1,∴abc<1,故①正确;②∵对称轴x=﹣=1,∴2a+b=1;故②正确;③∵2a+b=1,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<1,∴a﹣(﹣2a)+c=3a+c<1,故③错误;④如图,当﹣1<x<3时,y不只是大于1.故④错误.⑤根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c<a+b+c,所以a+b>m(am+b)(m≠1).故⑤正确.故选:C.【题目点拨】考核知识点:二次函数性质.理解二次函数的基本性质是关键.4、D【分析】首先根据二次函数解析式确定抛物线的对称轴为x=1,再根据抛物线的增减性以及对称性可得y1,y1,y3的大小关系.【题目详解】∵二次函数y=-x1+4x+c=-(x-1)1+c+4,∴对称轴为x=1,∵a<0,∴x<1时,y随x增大而增大,当x>1时,y随x的增大而减小,∵(-1,y1),(1,y1),(3,y3)在二次函数y=-x1+4x+c的图象上,且-1<1<3,|-1-1|>|1-3|,∴y1<y3<y1.故选D.【题目点拨】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,关键是掌握二次函数图象上点的坐标满足其解析式.5、B【分析】根据矩形的性质可知,要求BD的最小值就是求AC的最小值,而AC的长度对应的是A点的纵坐标,然后利用二次函数的性质找到A点纵坐标的最小值即可.【题目详解】∵四边形ABCD是矩形∴∴顶点坐标为∵点在抛物线上运动∴点A纵坐标的最小值为2∴AC的最小值是2∴BD的最小值也是2故选:B.【题目点拨】本题主要考查矩形的性质及二次函数的最值,掌握矩形的性质和二次函数的图象和性质是解题的关键.6、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【题目详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【题目点拨】此题考查反比例函数的性质,熟记性质并运用解题是关键.7、C【分析】设共有x个班级参赛,根据每两班之间都比赛一场可知每个班要进行(x-1)场比赛,根据计划安排场比赛列方程求出x的值即可得答案.【题目详解】设共有x个班级参赛,∵每两班之间都比赛一场,∴每个班要进行(x-1)场比赛,∵计划安排场比赛,∴,解得:x1=5,x2=-4(不合题意,舍去),∴参加比赛的班级有5个,故选:C.【题目点拨】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.8、C【解题分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【题目详解】解:令x=0,则y=3,
∴抛物线与y轴的交点为(0,3),
故选:C.【题目点拨】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.9、B【解题分析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是×6π×5=15π(cm2),故选B.10、D【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【题目详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【题目点拨】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.11、A【题目详解】∵抛物线∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.12、A【分析】可根据二次函数图像左加右减,上加下减的平移规律进行解答.【题目详解】二次函数向右平移个单位长度得,,再向上平移个单位长度得即故选A.【题目点拨】本题考查了二次函数的平移,熟练掌握平移规律是解题的关键.二、填空题(每题4分,共24分)13、8【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【题目详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm,BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【题目点拨】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.14、(1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【题目详解】由题意可得,
△OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),
∴OA=3,OB=4,∠BOA=90°,∴,∴旋转到第三次时的直角顶点的坐标为:(12,0),
∵301÷3=100…1
∴旋转第301次的直角顶点的坐标为:(1200,0),
故答案为:(1200,0).【题目点拨】本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键.15、1【分析】由于正比例函数和反比例函数图象都是以原点为中心的中心对称图形,因此它们的交点A、B关于原点成中心对称,则有x₂=﹣x₁,y₂=﹣y₁.由A(x₁,y₂)在双曲线y=﹣上可得x₁y₁=﹣5,然后把x₂=﹣x₁,y₂=﹣y₁代入2x₁y₂+x₂y₁的就可解决问题.【题目详解】解:∵直线y=kx(k>0)与双曲线y=﹣都是以原点为中心的中心对称图形,∴它们的交点A、B关于原点成中心对称,∴x₂=﹣x₁,y₂=﹣y₁.∵A(x₁,y₁)在双曲线y=﹣上,∴x₁y₁=﹣5,∴2x₁y₂+x₂y₁=2x₁(﹣y₁)+(﹣x₁)y₁=﹣3x₁y₁=1.故答案为:1.【题目点拨】本题主要考查了反比例函数图象上点的坐标特征、正比例函数及反比例函数图象的对称性等知识,得到A、B关于原点成中心对称是解决本题的关键.16、7【解题分析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.17、y=(答案不唯一)【解题分析】根据反比例函数的性质,只需要当k>0即可,答案不唯一.故答案为y=(答案不唯一).18、-3【分析】欲求的值,根据一元二次方程根与系数的关系,求得两根的和与积,代入数值计算即可.【题目详解】解:根据题意x1+x2=2,x1•x2=-4,===-3.故答案为:-3.【题目点拨】本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是经常使用的一种解题方法.三、解答题(共78分)19、(1)y=;(2)-1【分析】(1)直接利用待定系数法求出反比例函数解析式即可;
(2)直接利用x=1代入求出答案.【题目详解】解:(1)∵y是x的反比例函数,∴设y=,当x=-2时,y=8,∴k=(-2)×8=-16,∴y=;(2)当x=1时,代入,y=-16÷1=-1.【题目点拨】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.20、(1)OE∥BC.理由见解析;(2)【分析】(1)连接OC,根据已知条件可推出,进一步得出结论得以证明;(2)根据(1)的结论可得出∠E=∠BCD,对应的正切值相等,可得出CE的值,进一步计算出OE的值,在Rt△AFO中,设OF=3x,则AF=4x,解出x的值,继而得出OF的值,从而可得出答案.【题目详解】解:(1)OE∥BC.理由如下:连接OC,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCE=90,∴∠OCA+∠ECF=90,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90,∴∠EFC=180O-(∠E+∠ECF)=90.∴∠EFC=∠ACB=90,∴OE∥BC.(2)由(1)知,OE∥BC,∴∠E=∠BCD.在Rt△OCE中,∵AB=12,∴OC=6,∵tanE=tan∠BCD=,∴.∴OE2=OC2+CE2=62+82,∴OE=10又由(1)知∠EFC=90,∴∠AFO=90.在Rt△AFO中,∵tanA=tanE=,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:∴,∴.【题目点拨】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.21、(1);(2)【解题分析】(1)根据甲盘中的数字,可判断求出概率;(2)列出符合条件的所有可能,然后确定符合条件的可能,求出概率即可.【题目详解】(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.22、(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解题分析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.试题解析:(1)由题意得,==;(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.23、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.【分析】(1)将二次函数的一般式转化为顶点式,即可求出结论;(2)根据抛物线的开口方向和对称轴左右两侧的增减性即可得出结论;(3)根据抛物线的平移规律:括号内左加右减,括号外上加下减,即可得出结论.【题目详解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴当x=3时,y有最小值,最小值是-5;(2)∵2>0,对称轴为x=3∴抛物线的开口向上∴当x<3时,y随x的增大而减小;(3)∵将该抛物线向右平移2个单位,再向上平移2个单位,∴平移后的解析式为:y=2(x-3-2)2-5+2=2(x-5)2-3即新抛物线的表达式为y=2x2-20x+47【题目点拨】此题考查的是二次函数的图像及性质,掌握
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年设备借款担保合同
- 设备进场验收登记制度(4篇)
- 范进中举课本剧
- 2025宾馆公共区域绿化养护与美化合同3篇
- 2024年设计服务外包合同范本版B版
- 2024养老院老年文化娱乐活动合作协议3篇
- 2024版:某科技公司与某政府部门之间关于智慧城市建设技术服务的合同
- 2024年软件知识产权许可与全球市场拓展协议2篇
- 丽水学院《中西医结合实验诊断研究》2023-2024学年第一学期期末试卷
- 湖南有色金属职业技术学院《外科》2023-2024学年第一学期期末试卷
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 2024年手术室带教工作计划样本(5篇)
- 一年级数学(上)计算题专项练习汇编
- 保安服务招投标书范本(两篇)2024
- 辽宁省沈阳市五校协作体2024-2025学年高二上学期11月期中考试语文试题(含答案)
- 算法分析与设计学习通超星期末考试答案章节答案2024年
- 保密知识培训
- 2024医疗器械质量管理制度
- 江西省稳派教育2025届数学高二上期末教学质量检测模拟试题含解析
- 八年级历史上册(部编版)第六单元中华民族的抗日战争(大单元教学设计)
评论
0/150
提交评论