2024届广西钦州市钦州港经济技术开发区九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届广西钦州市钦州港经济技术开发区九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届广西钦州市钦州港经济技术开发区九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届广西钦州市钦州港经济技术开发区九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届广西钦州市钦州港经济技术开发区九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西钦州市钦州港经济技术开发区九年级数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x2+2x+1 C.x2﹣2x+1 D.x(x﹣2)﹣(x﹣2)2.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°3.已知二次函数的图象与x轴只有一个交点,则这个交点的坐标为()A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)4.已知一元二次方程x2+kx﹣5=0有一个根为1,k的值为()A.﹣2 B.2 C.﹣4 D.45.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=3156.在反比例函中,k的值是()A.2 B.-2 C.1 D.7.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(

)A. B. C. D.8.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.89.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()A. B. C. D.10.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)11.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)212.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④二、填空题(每题4分,共24分)13.将点P(-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为_____.14.已知一条抛物线,以下说法:①对称轴为,当时,随的增大而增大;②;③顶点坐标为;④开口向上.其中正确的是______.(只填序号)15.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.16.已知:,且y≠4,那么=______.17.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为_____.18.已知∽,若周长比为4:9,则_____________.三、解答题(共78分)19.(8分)已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B两点,与y轴交于点C,求出△ABC的面积.20.(8分)如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.21.(8分)在一个不透明的布袋里装有3个标有1,2,3的小球,它们的形状,大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,然后放回袋中搅匀,王芳再从袋中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y).(1)用列表或画树状图(只选其中一种)的方法表示出点M所有可能的坐标;(2)求点M(x,y)在函数y=x2图象上的概率.22.(10分)如图,已知:在△ABC中,AB=AC,BD是AC边上的中线,AB=13,BC=10,(1)求△ABC的面积;(2)求tan∠DBC的值.23.(10分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)24.(10分)如图,在中,AC=4,CD=2,BC=8,点D在BC边上,(1)判断与是否相似?请说明理由.(2)当AD=3时,求AB的长25.(12分)如图,在中,,点从点出发,以的速度向点移动,点从点出发,以的速度向点移动.如果两点同时出发,经过几秒后的面积等于?26.如图,,以为直径作,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)若,,求的半径.

参考答案一、选择题(每题4分,共48分)1、B【分析】原式各项分解后,即可做出判断.【题目详解】A、原式=(x+1)(x-1),含因式x-1,不合题意;

B、原式=(x+1)2,不含因式x-1,符合题意;

C、原式=(x-1)2,含因式x-1,不合题意;

D、原式=(x-2)(x-1),含因式x-1,不合题意,

故选:B.【题目点拨】此题考查因式分解-运用公式法,提公因式法,熟练掌握因式分解的方法是解题的关键.2、A【解题分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=∠AOB=30°.【题目详解】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=∠AOB=30°.故选A.【题目点拨】此题考查了切线的性质:圆的切线垂直于经过切点的半径;以及圆周角定理:等弧所对的圆周角等于所对圆心角的一半.3、C【分析】根据△=b2-4ac=0时,抛物线与x轴有一个交点列出方程,解方程求出k,再根据二次函数的图象和性质解答.【题目详解】∵二次函数的图象与x轴只有一个交点,∴,,解得:,∴二次函数,当时,,故选C.【题目点拨】本题考查的是抛物线与x轴的交点,掌握当△=b2-4ac=0时,抛物线与x轴有一个交点是解题的关键.4、D【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于k的一次方程1﹣5+k=0,然后解一次方程即可.【题目详解】解:把x=1代入方程得1+k﹣5=0,解得k=1.故选:D.【题目点拨】本题考查一元二次方程的解.熟记一元二次方程解得定义是解决此题的关键.5、B【解题分析】试题分析:根据题意,设设每次降价的百分率为x,可列方程为560(1-x)²=315.故选B6、B【分析】根据反比例函数的定义,直接可得出k的值.【题目详解】∵反比例一般式为:∴k=-1故选:B.【题目点拨】本题考查反比例函数的一般式,注意本题的比例系数k是-1而非1.7、A【解题分析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.8、A【解题分析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【题目详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【题目点拨】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.9、A【分析】根据正方形的面积公式可得大正方形的边长为,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【题目详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为,小正方形的边长为5,∴,∴,∴.故选A.【题目点拨】本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出.10、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【题目详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),

故选:A.【题目点拨】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.11、C【解题分析】依据一元二次方程的定义解答即可.【题目详解】A.x20是分式方程,故错误;B.y2﹣3x+2=0是二元二次方程,故错误;C.x2=5x是一元二次方程,故正确;D.x2﹣4=(x+1)2是一元一次方程,故错误.故选:C.【题目点拨】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解答本题的关键.12、C【分析】根据二次函数图像的基本性质依次进行判断即可.【题目详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【题目点拨】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.二、填空题(每题4分,共24分)13、(-1,1)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【题目详解】原来点的横坐标是-1,纵坐标是2,向左平移2个单位,再向上平移1个单位得到新点的横坐标是-1−2=-1,纵坐标为2+1=1.即对应点的坐标是(-1,1).故答案填:(-1,1).【题目点拨】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、①④【分析】先确定顶点及对称轴,结合抛物线的开口方向逐一判断.【题目详解】因为y=2(x﹣3)2+1是抛物线的顶点式,顶点坐标为(3,1),①对称轴为x=3,当x>3时,y随x的增大而增大,故①正确;②,故②错误;③顶点坐标为(3,1),故③错误;④∵a=1>0,∴开口向上,故④正确.故答案为:①④.【题目点拨】本题考查了二次函数的性质以及函数的单调性和求抛物线的顶点坐标、对称轴及最值的方法.熟练掌握二次函数的性质是解题的关键.15、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【题目详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.【题目点拨】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.16、【分析】由分式的性质和等比性质,即可得到答案.【题目详解】解:∵,∴,由等比性质,得:;故答案为:.【题目点拨】本题考查了比例的性质,以及分式的性质,解题的关键是熟练掌握等比性质.17、【分析】先求出∠ACD=30°,进而可算出CE、AD,再算出△AEC的面积.【题目详解】如图,由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=,∴CE=,DE=,AD=,∴.故答案为:.【题目点拨】本题考查了旋转的性质、矩形的性质、直角三角形中30度角的性质,三角形面积计算等知识点,难度不大.清楚旋转的“不变”特性是解答的关键.18、4:1【分析】根据相似三角形周长的比等于相似比解答即可.【题目详解】∵△ABC∽△DEF,∴.故答案为:4:1.【题目点拨】本题考查了相似三角形的性质,牢记相似三角形(多边形)的周长的比等于相似比是解题的关键.三、解答题(共78分)19、1.【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=×AB×OC,即可得答案.【题目详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=×AB×OC=×4×6=1.【题目点拨】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.20、(1)A的坐标为(,3);(2)x≥.【解题分析】试题分析:(1)联立两直线解析式,解方程组即可得到点A的坐标;(2)根据图形,找出点A右边的部分的x的取值范围即可.试题解析:(1)由,解得:,∴A的坐标为(,3);(2)由图象,得不等式2x≥-x+4的解集为:x≥.21、(1)(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),见解析;(2)【分析】(1)根据题意列出表格即可;(2)由表格求得所有可能的结果即可.【题目详解】解:(1)用列表的方法表示出点M所有可能的坐标如下;(2)由表格可知,共有9种可能出现的结果,其中点M(x,y)在函数y=x2图象上的的结果有1种,即(1,1),∴P(M)=.【题目点拨】本题考查了列表法与树状图法、二次函数图象上的特征等知识;利用列表法或树状图法展示所有可能的结果和从中选出符合事件的结果数目是解题的关键.22、(1)60;(2).【分析】(1)作等腰三角形底边上的高AH并根据勾股定理求出,再根据三角形面积公式即可求解;(2)方法一:作等腰三角形底边上的高AH并根据勾股定理求出,与BD交点为E,则E是三角形的重心,再根据三角形重心的性质求出EH,∠DBC的正切值即可求出.方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F,先根据勾股定理求出AH的长,再根据三角形中位线定理求出DF的长,BF的长就等于BC的,∠DBC的正切值即可求出.【题目详解】解:(1)过点A作AH⊥BC,垂足为点H,交BD于点E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12,∴△ABC的面积=;(2)方法一:过点A作AH⊥BC,垂足为点H,交BD于点E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12∵BD是AC边上的中线所以点E是△ABC的重心∴EH==4,∴在Rt△EBH中,tan∠DBC==.方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F.∵AB=AC=13,AH⊥BC,BC=10∴BH=CH=5在Rt△ABH中,AH==12∵AH⊥BC、DF⊥BC∴AH∥DF,D为AC中点,∴DF=AH=6,∴BF=∴在Rt△DBF中,tan∠DBC==.【题目点拨】本题主要考查解直角三角形,掌握勾股定理及锐角三角函数的定义是解题的关键.23、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数;(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.【题目详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论