版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省上饶上饶县联考数学九年级第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.2.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是()A.5 B.4 C.3 D.03.二次函数的图象与轴的交点个数是()A.2个 B.1个 C.0个 D.不能确定4.下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式;B.只有被开方数完全相同的二次根式才是同类二次根式;C.和是同类二次根式;D.和是同类二次根式.5.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.6.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是()A. B. C. D.7.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.8.如图所示的图案是按一定规律排列的,照此规律,在第1至第2018个图案中“♣”共有()个.A.504 B.505 C.506 D.5079.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>210.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.12.已知在平面直角坐标系中,点在第二象限,且到轴的距离为3,到轴的距离为4,则点的坐标为______.13.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.14.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.15.已知点,都在反比例函数图象上,则____(填“”或“”或“”).16.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.17.已知tan(α+15°)=,则锐角α的度数为______°.18.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.三、解答题(共66分)19.(10分)在“美丽乡村”建设中,某村施工人员想利用如图所示的直角墙角,计划再用30米长的篱笆围成一个矩形花园,要求把位于图中点处的一颗景观树圈在花园内,且景观树与篱笆的距离不小2米.已知点到墙体、的距离分别是8米、16米,如果、所在两面墙体均足够长,求符合要求的矩形花园面积的最大值.20.(6分)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.21.(6分)如图,在某建筑物AC上,挂着一宣传条幅BC,站在点F处,测得条幅顶端B的仰角为30°,往条幅方向前行20米到达点E处,测得条幅顶端B的仰角为60°,求宣传条幅BC的长.(,结果精确到0.1米)22.(8分)(1)计算:tan31°sin61°+cos231°-tan45°(2)解方程:x2﹣2x﹣1=1.23.(8分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?24.(8分)对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=1时,代数式等于1;当x=1时,代数式等于1,我们就称1和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=1.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=1,求b的值.25.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.26.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.2、C【分析】本题通过做辅助线构造新三角形,继而利用等边三角形性质求证四边形HFPE为平行四边形,进一步结合点G中点性质确定点G运动路径为△HCD中位线,最后利用中位线性质求解.【题目详解】延长AE与BF使其相交于点H,连接HC、HD、HP,如下图所示:由已知得:∠A=∠FPB=60°,∠B=∠EPA=60°,∴AH∥PF,BH∥PE,∴四边形HFPE为平行四边形,∴EF与PH互相平分,又∵点G为EF中点,∴点G为PH中点,即在点P运动过程中,点G始终为PH的中点,故点G的运动轨迹为△HCD的中位线MN.∵,,∴,∴,即点G的移动路径长为1.故选:C.【题目点拨】本题考查等边三角形性质以及动点问题,此类型题目难点在于辅助线的构造,需要多做类似题目积累题感,涉及动点运动轨迹时,其路径通常是较为特殊的线段或图形,例如中位线或圆.3、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数.【题目详解】由二次函数,
知
∴.∴抛物线与轴有二个公共点.
故选:A.【题目点拨】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数取决于的值.4、D【分析】根据同类二次根式的定义逐项分析即可.【题目详解】解:A、被开方数不同的二次根式若化简后被开方数相同,就是同类二次根式,故不正确;B.化成最简二次根式后,被开方数完全相同的二次根式才是同类二次根式,故不正确;C.和的被开方数不同,不是同类二次根式,故不正确;D.=和=,是同类二次根式,正确故选D.【题目点拨】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.5、A【题目详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.6、A【分析】首先根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【题目详解】解:∵根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:,该几何体的侧面积为:,∴总表面积为:,故选:A.【题目点拨】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.7、C【题目详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【题目点拨】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.8、B【分析】根据题意可知所示的图案每四个为一组,交替出现,从而可以计算出在第1至第2018个图案中“♣”共有多少个,进行分析即可求解.【题目详解】解:由图可知,所示的图案每四个为一组,交替出现,∵2018÷4=504…2,∴在第1至第2018个图案中“♣”共有504+1=505(个).故选:B.【题目点拨】本题考查图形的变化类,解答本题的关键是明确题意以及发现题目中图形的变化规律并利用数形结合的思想进行分析解答.9、D【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x轴的上方,由此可以求出x的取值范围.【题目详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【题目点拨】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.10、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【题目详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【题目点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.二、填空题(每小题3分,共24分)11、1【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【题目详解】由图象可知点B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:1.故答案为:1.【题目点拨】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.12、(-4,3)【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【题目详解】解:点在第二象限,且到轴的距离为3,到轴的距离为4,点的横坐标为,纵坐标为3,点的坐标为.故答案为.【题目点拨】本题考查了点的坐标,熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值是解题的关键.13、【解题分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【题目详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【题目点拨】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.14、【分析】直接利用弧长公式进行计算.【题目详解】解:由题意得:=,故答案是:【题目点拨】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.15、【分析】先判断,则图像经过第一、三象限,根据反比例函数的性质,即可得到答案.【题目详解】解:∵,∴反比例函数的图象在第一、三象限,且在每个象限内y随x增大而减小,∵,∴,故答案为:.【题目点拨】本题考查了反比例函数的图象和性质,解题的关键是掌握时,反比例函数经过第一、三象限,且在每个象限内y随x增大而减小.16、-2或1.【解题分析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.17、15【分析】直接利用特殊角的三角函数值求出答案.【题目详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【题目详解】列表得:
-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【题目点拨】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、216米2【分析】设AB=x米,可知BC=(30-x)米,根据点到墙体、的距离分别是8米、16米,求出x的取值范围,再根据矩形的面积公式得出关于x的函数关系式即可得出结论.【题目详解】解:设矩形花园的宽为米,则长为米由题意知,解得即显然,时的值随的增大而增大所以,当时,面积取最大值答:符合要求的矩形花园面积的最大值是216米2【题目点拨】此题主要考查二次函数的应用,关键是正确理解题意,列出S与x的函数关系式解题的关键.20、(1)共有9种等可能的结果;(2).【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可.【题目详解】(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:.考点:列表法与树状图法.21、宣传条幅BC的长为17.3米.【解题分析】试题分析:先由∠F=30°,∠BEC=60°解得∠EBF=30°=∠F,从而可得BE=FE=20米,再在Rt△BEC中由sin∠BEC=即可解得BC的值.试题解析:∵∠BEC=∠F+∠EBF,∠F=30°,∠BEC=60°,∴∠EBF=60°-30°=30°=∠F,∴BE=FE=20(米).∵在Rt△BEC中,sin∠BEC=,∴BC=BE×≈10×1.732=17.32≈17.3(米).22、(1);(2)x=1【分析】(1)根据特殊角的三角函数值分别代入,再求出即可;(2)方程利用公式法求出解即可.【题目详解】(1)原式===(2)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>1,方程有两个不相等的实数根,x===1【题目点拨】此题考查特殊角的三角函数值,解一元二次方程-公式法,熟练掌握运算法则是解题的关键.23、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【题目详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.【题目点拨】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.24、(3)﹣3和2;2;(2)见解析;(2)﹣2或3【分析】(3)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程2x2﹣x+3=3没有实数根,进而可得出代数式2x2+3没有不变值;(2)由A=3可得出方程x2﹣(b+3)x+3=3有两个相等的实数根,进而可得出△=3,解之即可得出结论.【题目详解】解:(3)依题意,得:x2﹣2=x,即x2﹣x﹣2=3,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五电影制作保密合同范本6篇
- 二零二五版木材行业碳排放权交易合同范本8篇
- 2025年个人住宅房产抵押担保合同范本
- 课题申报参考:内感受干预促进青少年情绪能力的神经基础
- 课题申报参考:民事诉讼法的基础理论和基本制度研究
- 2025年度住宅小区停车位共有产权转让合同范本
- 2025年个人房产继承权转让合同范本2篇
- 2025版农机具租赁与智能灌溉系统合同4篇
- 二零二五版美容美发院加盟店会员管理与服务合同4篇
- 2025年度高端建筑用热镀锌钢管采购合同3篇
- DB43-T 3022-2024黄柏栽培技术规程
- 成人失禁相关性皮炎的预防与护理
- 九宫数独200题(附答案全)
- 人员密集场所消防安全管理培训
- 《聚焦客户创造价值》课件
- PTW-UNIDOS-E-放射剂量仪中文说明书
- JCT587-2012 玻璃纤维缠绕增强热固性树脂耐腐蚀立式贮罐
- 保险学(第五版)课件全套 魏华林 第0-18章 绪论、风险与保险- 保险市场监管、附章:社会保险
- 典范英语2b课文电子书
- 员工信息登记表(标准版)
- 春节工地停工复工计划安排( 共10篇)
评论
0/150
提交评论