版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古呼伦贝尔市海拉尔区铁路第三中学数学九上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.对于非零实数,规定,若,则的值为A. B. C. D.2.在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每1个单位长度.点P在弧线上运动的速度为每秒个单位长度,则2019秒时,点P的坐标是()A. B.C. D.3.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.4.相邻两根电杆都用锅索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.8米C.3米D.必须知道两根电线杆的距离才能求出点P离地面距离5.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为()A. B. C. D.6.如图,CD⊥x轴,垂足为D,CO,CD分别交双曲线y=于点A,B,若OA=AC,△OCB的面积为6,则k的值为()A.2 B.4 C.6 D.87.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.108.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2 B.π﹣ C.π﹣2 D.π﹣9.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.-3 B.-2.5 C.-2 D.-1.510.已知反比例函数y=2x﹣1,下列结论中,不正确的是()A.点(﹣2,﹣1)在它的图象上B.y随x的增大而减小C.图象在第一、三象限D.若x<0时,y随x的增大而减小11.如图,从点看一山坡上的电线杆,观测点的仰角是45°,向前走到达点,测得顶端点和杆底端点的仰角分别是60°和30°,则该电线杆的高度()A. B. C. D.12.若关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,作直线,将直线下方的二次函数图象沿直线向上翻折,与其它剩余部分组成一个组合图象,若线段与组合图象有两个交点,则的取值范围为_____.14.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.15.如图,是半圆,点O为圆心,C、D两点在上,且AD∥OC,连接BC、BD.若=65°,则∠ABD的度数为_____.16.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.17.已知二次函数的图象与x轴有交点,则k的取值范围是__________18.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.三、解答题(共78分)19.(8分)已知关于x的方程x2-(2k-1)x+k2-2k+3=0有两个不相等的实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,是否存在这样的实数k,使得|x1|-|x2|=成立?若存在,求出这样的k值;若不存在,请说明理由.20.(8分)如图,中,,,面积为1.(1)尺规作图:作的平分线交于点;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点到两条直角边的距离.21.(8分)解方程:3x(x﹣1)=x﹣1.22.(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?23.(10分)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使,连接DE,分别交BC,AC交于点F,G.(1)求证:;(2)若,,求FG的长.24.(10分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.25.(12分)金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为,测得楼AB的底部B处的俯角为.已知D处距地面高度为12m,则这个小组测得大楼AB的高度是多少?(结果保留整数.参考数据:,,)26.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】试题分析:∵,∴.又∵,∴.解这个分式方程并检验,得.故选A.2、B【分析】设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此规律即可得出结论.【题目详解】解:设第n秒运动到Pn(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019为(,﹣),故答案为B.【题目点拨】本题考查了规律型中的点的坐标,解题的关键是找出变化规律并根据规律找出点的坐标.3、A【分析】直接利用概率公式计算可得.【题目详解】解:从中任意抽取1张,是“红桃”的概率为,故选A.【题目点拨】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.4、A【分析】如图,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得对应高CE与BE之比,根据CD∥PE可得△BPE∽△BDC,利用对应边成比例可得比例式,把相关数值代入求解即可.【题目详解】如图,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴,∴,∵CD∥PE,∴△BPE∽△BDC,∴,∴,解得:PE=2.1.故选:A.【题目点拨】本题考查相似三角形的应用,平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;正确作出辅助线构建相似三角形并熟练掌握相似三角形的判定定理是解题关键.5、A【分析】由可得∠APB=90°,根据AB是定长,由定长对定角可知P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,用DO减去圆的半径即可得出最小值.【题目详解】解:∵,∴∠APB=90°,∵AB=6是定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,如图所示:∵,,∴,由勾股定理得:DO=5,∴,即的长的最小值为2,故选A.【题目点拨】本题属于综合难题,主要考查了直径所对的角是圆周角的应用:由定弦对定角可得动点的轨迹是圆,发现定弦和定角是解题的关键.6、B【分析】设A(m,n),根据题意则C(2m,2n),根据系数k的几何意义,k=mn,△BOD面积为k,即可得到S△ODC=•2m•2n=2mn=2k,即可得到6+k=2k,解得k=1.【题目详解】设A(m,n),∵CD⊥x轴,垂足为D,OA=AC,∴C(2m,2n),∵点A,B在双曲线y=上,∴k=mn,∴S△ODC=×2m×2n=2mn=2k,∵△OCB的面积为6,△BOD面积为k,∴6+k=2k,解得k=1,故选:B.【题目点拨】本题考查了反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.7、D【题目详解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故选D.考点:解直角三角形;8、C【解题分析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD=,AC=2CD=2,∵sin∠COD=,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=B×AC=×2×2=2,S扇形AOC=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=,故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=,有一定的难度.9、C【分析】根据顶点P在线段MN上移动,又知点M、N的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M和N时的情况,即可判断出A点坐标的最小值.【题目详解】解:根据题意知,点B的横坐标的最大值为3,当对称轴过N点时,点B的横坐标最大,∴此时的A点坐标为(1,0),当对称轴过M点时,点A的横坐标最小,此时的B点坐标为(0,0),∴此时A点的坐标最小为(-2,0),∴点A的横坐标的最小值为-2,故选:C.【题目点拨】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般.10、B【分析】由反比例函数的关系式,可以判断出(-2,-1)在函数的图象上,图象位于一、三象限,在每个象限内y随x的增大而减小,进而作出判断,得到答案.【题目详解】A、把(﹣2,﹣1)代入y=2x﹣1得:左边=右边,故本选项正确,不符合题意;B、k=2>0,在每个象限内,y随x的增大而减小,故本选项错误,符合题意;C、k=2>0,图象在第一、三象限,故本选项正确,不符合题意;D、若x<0时,图象在第三象限内,y随x的增大而减小,故本选项正确,不符合题意;不正确的只有选项B,故选:B.【题目点拨】考查反比例函数的图象和性质,特别注意反比例函数的增减性,当k>0,在每个象限内,y随x的增大而减小;当k<0,在每个象限内,y随x的增大而增大.11、A【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【题目详解】解:延长PQ交直线AB于点E,设PE=x.
在直角△APE中,∠PAE=45°,
则AE=PE=x;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,,∵AB=AE-BE=6,则解得:∴在直角△BEQ中,故选:A【题目点拨】本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.12、B【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,建立关于k的等式,求出k.【题目详解】解:∵方程有两个相等的实数根,∴△=b2−4ac=62−4×1×k=36−4k=0,解得:k=1.故选:B.【题目点拨】本题考查一元二次方程根的情况与判别式,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.二、填空题(每题4分,共24分)13、或【解题分析】画出图形,采用数形结合,分类讨论讨论,分直线y=t在x轴上方和下方两种情况,需要注意的是,原抛物线与线段BC本来就有B、C两个交点.具体过程见详解.【题目详解】解:分类讨论(一):原抛物线与线段BC就有两个交点B、C.当抛物线在x轴下方部分,以x轴为对称轴向上翻折后,就会又多一个交点,所以要满足只有两个交点,直线y=t需向上平移,点B不再是交点,交点只有点C和点B、C之间的一个点,所以t>0;当以直线y=3为对称轴向上翻折时,线段与组合图象就只有点C一个交点了,不符合题意,所以t<3,故;(二)∵=(x-2)2-1,∴抛物线沿翻折后的部分是抛物线)2+k在直线y=t的上方部分,当直线BC:y=-x+3与抛物线只有一个交点时,即的△=0,解得k=,此时线段BC与组合图象W的交点,既有C、B,又多一个,共三个,不符合题意,所以翻折部分需向下平移,即直线y=t向下平移,k=时,抛物线)2+的顶点坐标为(2,),与的顶点(2,-1)的中点是(2,-),所以t<-,又因为,所以.综上所述:t的取值范围是:或故答案为或.【题目点拨】本题考查抛物线的翻折和上下平移、抛物线和线段的交点问题.解题关键是熟练掌握二次函数的图像和性质.14、6cm【分析】利用相似三角形的周长比等于相似比,根据它们的周长之和为15,即可得到结论.【题目详解】解:∵两个相似三角形的对应角平分线的比为2:3,∴它们的周长比为2:3,∵它们的周长之和为15cm,∴较小的三角形周长为15×=6(cm).故答案为:6cm.【题目点拨】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.15、25°【分析】根据AB是直径可以证得AD⊥BD,根据AD∥OC,则OC⊥BD,根据垂径定理求得弧BC的度数,即可求得的度数,然后求得∠ABD的度数.【题目详解】解:∵是半圆,即AB是直径,∴∠ADB=90°,又∵AD∥OC,∴OC⊥BD,∴=65°∴=180°﹣65°﹣65°=50°,∴∠ABD=.故答案为:25°.【题目点拨】本题考查了垂径定理、圆周角的定理,利用垂径定理证明=65°是解决本题的关键.16、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【题目详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【题目点拨】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.17、k≤4且k≠1【分析】根据二次函数的定义和图象与x轴有交点则△≥0,可得关于k的不等式组,然后求出不等式组的解集即可.【题目详解】解:根据题意得k−1≠0且△=22−4×(k−1)×1≥0,解得k≤4且k≠1.故答案为:k≤4且k≠1.【题目点拨】本题考查了抛物线与x轴的交点问题:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2−4ac决定抛物线与x轴的交点个数:△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.18、(1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【题目详解】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为(1,﹣2).【题目点拨】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.三、解答题(共78分)19、(1)k>;(2)1.【分析】(1)由方程有两个不相等的实数根知△>2,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k﹣1)2+1>2,可以判断出x1>2,x2>2.将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【题目详解】解:(1)由题意知△>2,∴[﹣(2k﹣1)]2﹣1×1×(k2﹣2k+2)>2,整理得:1k﹣7>2,解得:k;(2)由题意知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k+1)2+1>2,∴x1,x2同号.∵x1+x2=2k﹣1>=,∴x1>2,x2>2.∵|x1|﹣|x2|,∴x1﹣x2,∴x12﹣2x1x2+x22=5,即(x1+x2)2﹣1x1x2=5,代入得:(2k﹣1)2﹣1(k2﹣2k+2)=5,整理,得:1k﹣12=2,解得:k=3.【题目点拨】本题考查了根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.20、(1)见解析;(2)【分析】(1)利用尺规作图的步骤作出∠ACB的平分线交AB于点D即可;
(2)作于E,于F,根据面积求出BC的长.法一:根据角平分线的性质得出DE=DF,从而得出四边形CEDF为正方形.再由,得出,列方程可以求出结果;法二:根据,利用面积法可求得DE,DF的值.【题目详解】解:(1)∠ACB的平分线CD如图所示:(2)已知,面积为1,∴.法一:作,,∵是角平分线,∴,,而,∴四边形为正方形.设为,则由,∴,∴.即,得.∴点到两条直角边的距离为.法二:,即,又由(1)知AC=15,BC=20,∴,∴.故点到两条直角边的距离为.【题目点拨】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型.21、x1=1或x1=【解题分析】移项后提取公因式x﹣1后利用因式分解法求得一元二次方程的解即可.【题目详解】解:3x(x﹣1)=x﹣1,移项得:3x(x﹣1)﹣(x﹣1)=0整理得:(x﹣1)(3x﹣1)=0x﹣1=0或3x﹣1=0解得:x1=1或x1=.【题目点拨】本题考查了因式分解法解一元二次方程,解题的关键是先移项,然后提取公因式,防止两边同除以x﹣1,这样会漏根.22、(1)y=﹣5x2+110x+1200;(2)售价定为189元,利润最大1805元【解题分析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【题目详解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【题目点拨】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.23、(1)证明见解析;(2)FG=2.【解题分析】(1)由平行四边形的性质可得,,进而得,根据相似三角形的性质即可求得答案;(2)由平行四边形的性质可得,进而可得,根据相似三角形的性质即可求得答案.【题目详解】(1)四边形ABCD是平行四边形,,,,∴,∵BE=AB,AE=AB+BE,,,;(2)四边形ABCD是平行四边形,,,,即,解得,.【题目点拨】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定定理与性质定理是解题的关键.24、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.【分析】(1)设大孔所在的抛物线的解析式为,求得大孔所在的抛物线的解析式为,当时,得到,于是得到结论;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为,求得小孔所在的抛物线的解析式为,当时,得到,于是得到结论.【题目详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度供暖服务续约协议
- 2024年度建筑材料研发与技术转让合同
- 2024年城市废弃物处理设施租赁合同
- 2024创意拓展训练服务合同
- 2024年廉洁购销合同范本
- 2024年度安徽省某县高速公路路基施工合同
- 2024年度企业级云存储服务合同
- 2024大型活动场地土方平整合同
- 2024年度果皮箱批量采购合同
- 2024年度国际教育培训项目合作合同
- GB/T 22796-2021床上用品
- 中国联通LAN工程施工及验收规范
- 中间表模式接口相关-住院与his-adt方案
- 临床PCR检验的室内质控方法课件
- 计算机解决问题的过程-优质课课件
- 作文讲评-“忘不了……”课件
- 深基坑安全管理(安全培训)课件
- 12月4日全国法制宣传日宪法日宪法知识科普宣教PPT教学课件
- 血液透析营养管理课件
- 神经内科医疗质量评价体系考核标准
- 绿化监理实施细则
评论
0/150
提交评论