山东省潍坊市青州市益都中学2024届九年级数学第一学期期末质量检测模拟试题含解析_第1页
山东省潍坊市青州市益都中学2024届九年级数学第一学期期末质量检测模拟试题含解析_第2页
山东省潍坊市青州市益都中学2024届九年级数学第一学期期末质量检测模拟试题含解析_第3页
山东省潍坊市青州市益都中学2024届九年级数学第一学期期末质量检测模拟试题含解析_第4页
山东省潍坊市青州市益都中学2024届九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市青州市益都中学2024届九年级数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使=0成立?则正确的结论是()A.m=0时成立 B.m=2时成立 C.m=0或2时成立 D.不存在2.已知点在抛物线上,则下列结论正确的是()A. B. C. D.3.要将抛物线平移后得到抛物线,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位. B.向左平移1个单位,再向下平移2个单位.C.向右平移1个单位,再向上平移2个单位. D.向右平移1个单位,再向下平移2个单位.4.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>45.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位6.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是()A. B. C.6 D.107.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A. B. C. D.8.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(

)A.15

B.12

C.9

D.69.在一个不透明的盒子中,装有绿色、黑色、白色的小球共有60个,除颜色外其他完全相同,一同学通过多次摸球试验后发现其中摸到绿色球、黑色球的频率稳定在和,盒子中白色球的个数可能是()A.24个 B.18个 C.16个 D.6个10.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B.C. D.11.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.212.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.1.其中正确的结论是_____.(把你认为正确结论的序号都填上)14.如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A与BC边上的点E重合,折痕交AB于点F.若BE:EC=m:n,则AF:FB=15.圆内接正六边形的边长为6,则该正六边形的边心距为_____.16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.17.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为_____.18.如图,在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则=_______.三、解答题(共78分)19.(8分)甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)求第一次甲将花传给丁的概率;(2)求经过两次传花,花恰好回到甲手中的概率.20.(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.21.(8分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有名,D类男生有名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,22.(10分)课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)在下边的图形中,画出所有符合题意的图形;(2)求BF的长.23.(10分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标.(1)求抛物线的解析式;(2)直线与抛物线交于点与轴交于点求的面积;(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标.24.(10分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C,(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.(12分)对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.(1)计算:,;(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.26.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?

参考答案一、选择题(每题4分,共48分)1、A【解题分析】∵x1,x2是关于x的一元二次方程x2-bx+b-2=0的两个实数根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,则故满足条件的b的值为0故选A.2、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【题目详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【题目点拨】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况3、D【分析】把抛物线解析式配方后可以得到平移公式,从而可得平移方法.【题目详解】解:由题意得平移公式为:,∴平移方法为向右平移1个单位,再向下平移2个单位.故选D.【题目点拨】本题考查二次函数图象的平移,经过对前后解析式的比较得到平移坐标公式是解题关键.4、B【题目详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.5、C【解题分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【题目详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.【题目点拨】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.6、C【分析】根据平行线分线段成比例可得,代入计算即可解答.【题目详解】解:∵l1∥l2∥l3,∴,即,解得:EF=1.故选:C.【题目点拨】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.7、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【题目详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为.故答案为A.【题目点拨】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.8、A【分析】根据三角函数的定义直接求解.【题目详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A9、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数.【题目详解】解:∵摸到绿色球、黑色球的频率稳定在和,∴摸到白球的频率为1-25%-45%=30%,故口袋中白色球的个数可能是60×30%=18个.故选:B.【题目点拨】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.10、B【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【题目详解】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的的图象经过二、四象限,没有符合条件的选项.故选:B.【题目点拨】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.11、C【解题分析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【题目详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【题目点拨】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.12、B【解题分析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.二、填空题(每题4分,共24分)13、①、②、④.【分析】①先利用等腰三角形的性质可得一组角相等,又因有一组公共角,所以由三角形相似的判定定理即可得;②根据为等腰三角形,加上、AB的值可得出底边CD的值,从而可找到两个三角形有一组相等的边,在加上①中两组相等的角,即可证明全等;③因只已知为直角三角形,所以要分两种情况考虑,利用三角形相似可得为直角三角形,再结合的值即可求得BD;④设,则,由∽得,从而可得出含x的等式,化简分析即可得.【题目详解】①(等边对等角)又∽,所以①正确;②作于H,如图在中,又由等腰三角形三线合一性质得,当时,则又在和中,,所以②正确;③为直角三角形,有两种情况:当时,如图1∽在中,可解得当时,如图2在中,可解得综上或,所以③不正确;④设,则由∽得,即故,所以④正确.综上,正确的结论有①②④.【题目点拨】本题考查了等腰三角形的定义和性质、三角形全等的判定、相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.14、【分析】由折叠得,AF:FB=EF:FB.证明△BEF∽△CDE可得EF:FB=DE:EC,由BE:EC=m:n可求解.【题目详解】∵BE=1,EC=2,∴BC=1.∵BC=AD=DE,∴DE=1.sin∠EDC=;∵∠DEF=90°,∴∠BEF+∠CED=90°.又∠BEF+∠BFE=90°,∴∠BFE=∠CED.又∠B=∠C,∴△BEF∽△CDE.∴EF:FB=DE:EC.∵BE:EC=m:n,∴可设BE=mk,EC=nk,则DE=(m+n)k.∴EF:FB=DE:EC=∵AF=EF,∴AF:FB=15、3【分析】根据题意画出图形,利用等边三角形的性质及锐角三角函数的定义直接计算即可.【题目详解】如图所示,连接OB、OC,过O作OG⊥BC于G.∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴边心距OG=OB•sin∠OBG=6(cm).故答案为:.【题目点拨】本题考查了正多边形与圆、锐角三角函数的定义及特殊角的三角函数值,熟知正六边形的性质是解答本题的关键.16、.【题目详解】连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH==1,∴EH=1,∴FH=,在Rt△FKH中,∠FKH=30°,∴KH=2FH=,∴AK=KH﹣AH==;故答案为.考点:旋转的性质.17、【分析】根据题意首先求出,再将所求式子因式分解,最后代入求值即可.【题目详解】把代入一元二次方程得,

所以.

故答案为:1.

【题目点拨】本题考查了一元二次方程的解及因式分解求代数式的值,明确方程的解的意义即熟练因式分解是解决问题的关键.18、.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据,得出CG与DE的倍数关系,并根据进行计算即可.【题目详解】延长EF和BC交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E∴∴∴直角三角形ABE中,又∵∠BED的角平分线EF与DC交于点F∴∵∴∴∴由,,可得∴设,,则∴∴解得∴故答案为:.【题目点拨】本题考查了矩形与角平分线的综合问题,掌握等腰直角三角形的性质和相似三角形的性质以及判定是解题的关键.三、解答题(共78分)19、(1);(2)【分析】(1)直接利用概率公式计算得出答案;(2)直接利用树状图法得出所有符合题意情况,进而求出概率.【题目详解】(1)P(第一次甲将花传给丁)=;(2)如图所示:,共有9种等可能的结果,其中符合要求的结果有3种,故P(经过两次传花,花恰好回到甲手里)==.【题目点拨】此题主要考查了树状图法求概率,正确画出树状图是解题关键.20、树高为5.5米【解题分析】根据两角相等的两个三角形相似,可得△DEF∽△DCB,利用相似三角形的对边成比例,可得,代入数据计算即得BC的长,由AB=AC+BC,即可求出树高.【题目详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为5.5米.【题目点拨】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.21、(1)3,1;(2)36°;(3)【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数,利用总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(2)利用360°×课前预习不达标百分比,即可解答;

(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【题目详解】(1)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图,故答案为3,1;(2)360°×(1﹣50%﹣25%﹣15%)=36°,答:扇形统计图中“课前预习不达标”对应的圆心角度数是36°;故答案为36°;(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)=.【题目点拨】此题考查条形统计图和扇形统计图的综合运用,解题关键在于读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)补全图形见解析;(2)BF=(+2)cm或BF=(-2)cm.【分析】(1)分两种情况:①△DEF在△ABC外部,②△DEF在△ABC内部进行作图即可;(2)根据(1)中两种情况分别求解即可.【题目详解】(1)补全图形如图:情况Ⅰ:情况Ⅱ:(2)情况Ⅰ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(+2)cm.情况Ⅱ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(-2)cm.【题目点拨】本题主要考查了勾股定理与解直角三角形的综合运用,熟练掌握相关概念是解题关键.23、(1);(2);(3)【分析】(1)根据对称轴公式及点A坐标建立方程组求解即可;(2)根据直线表达式求出点E坐标,再联立直线与抛物线的表达式求交点C、D的坐标,利用坐标即可求出的面积;(3)根据点Q在抛物线上设出点Q坐标,再根据P、Q之间的关系表示出点P的坐标,然后利用平行四边形的性质得到BE=PQ,从而建立方程求解即可.【题目详解】解:(1)由题可得,解得,∴抛物线解析式为;(2)在中,令,得,∴,由,解得或,∴,∴;(3)在中,令,得,解得或,∴,∴BE=1,设,则,∵四边形为平行四边形,∴,∴,整理得:,解得:或,当时,点Q与点B重合,故舍去,∴.【题目点拨】本题为二次函数综合题,熟练掌握对称轴公式、待定系数法求表达式、交点坐标的求法以及平行四边形的性质是解题的关键.24、(1)证明见解析;(1)BC=1.【解题分析】试题分析:(1)连接OB,由圆周角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论