2024届江苏省南京市新城中学九年级数学第一学期期末达标检测模拟试题含解析_第1页
2024届江苏省南京市新城中学九年级数学第一学期期末达标检测模拟试题含解析_第2页
2024届江苏省南京市新城中学九年级数学第一学期期末达标检测模拟试题含解析_第3页
2024届江苏省南京市新城中学九年级数学第一学期期末达标检测模拟试题含解析_第4页
2024届江苏省南京市新城中学九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市新城中学九年级数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.2.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2 B.3 C.4 D.53.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点4.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个 B.2个 C.3个 D.4个5.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是;④四边形ACEB的面积是1.则以上结论正确的是()A.①② B.②④ C.①②③ D.①③④6.已知△ABC与△DEF相似且对应周长的比为4:9,则△ABC与△DEF的面积比为A.2:3 B.16:81C.9:4 D.4:97.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A. B.C. D.8.如图,在正方形网格中,每个小正方形的边长是个单位长度,以点为位似中心,在网格中画,使与位似,且与的位似比为,则点的坐标可以为()A. B. C. D.9.如图,在半径为的中,弦长,则点到的距离为()A. B. C. D.10.如图,、分别与相切于、两点,点为上一点,连接,,若,则的度数为()A. B. C. D.11.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19612.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A. B. C.4 D.6二、填空题(每题4分,共24分)13.已知⊙半径为,点在⊙上,,则线段的最大值为_____.14.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.15.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)16.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.17.如图,在矩形中,,点在边上,,则BE=__________;若交于点,则的长度为________.18.两个函数和(abc≠0)的图象如图所示,请直接写出关于x的不等式的解集_______________.三、解答题(共78分)19.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?20.(8分)一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.21.(8分)如图,是的直径,,,连接交于点.(1)求证:是的切线;(2)若,求的长.22.(10分)一个四位数,记千位数字与个位数字之和为,十位数字与百位数字之和为,如果,那么称这个四位数为“对称数”最小的“对称数”为;四位数与之和为最大的“对称数”,则的值为;一个四位的“对称数”,它的百位数字是千位数字的倍,个位数字与十位数字之和为,且千位数字使得不等式组恰有个整数解,求出所有满足条件的“对称数”的值.23.(10分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.(1)求抛物线的解析式;(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.24.(10分)已知ΔABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出ΔABC绕点C按顺时针方向旋转;90°后的.25.(12分)如图,要利用一面足够长的墙为一边,其余三边用总长的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽米的门,能够建生态园的场地垂直于墙的一边长不超过米(围栏宽忽略不计).每个生态园的面积为平方米,求每个生态园的边长;每个生态园的面积_(填“能”或“不能”)达到平方米.(直接填答案)26.如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)

参考答案一、选择题(每题4分,共48分)1、B【解题分析】列表得:

1

2

3

4

1

2+1=3

3+1=4

4+1=5

2

1+2=3

3+2=5

4+2=6

3

1+3=4

2+3=5

4+3=7

4

1+4=5

2+4=6

3+4=7

∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:.故选B.2、B【解题分析】分析:根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=1即可.详解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=1.故选B.点睛:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.3、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【题目详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【题目点拨】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.4、A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【题目详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;

②对角线相等的平行四边形是矩形,故错误;

③任意四边形的中点四边形是平行四边形,正确;

④两个相似多边形的面积比2:3,则周长比为:,故错误,

正确的有1个,

故选A.【题目点拨】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.5、A【分析】①证明AC∥DE,再由条件CE∥AD,可证明四边形ACED是平行四边形;②根据线段的垂直平分线证明AE=EB,可得△BCE是等腰三角形;③首先利用含30°角的直角三角形计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2;④利用△ACB和△CBE的面积之和,可得四边形ACEB的面积.【题目详解】解:①∵∠ACB=90°,DE⊥BC,

∴∠ACD=∠CDE=90°,

∴AC∥DE,

∵CE∥AD,

∴四边形ACED是平行四边形,故①正确;

②∵D是BC的中点,DE⊥BC,

∴EC=EB,

∴△BCE是等腰三角形,故②正确;

③∵AC=2,∠ADC=30°,∴AD=4,CD=∵四边形ACED是平行四边形,

∴CE=AD=4,

∵CE=EB,

∴EB=4,DB=∴CB=∴AB=∴四边形ACEB的周长是10+,故③错误;④四边形ACEB的面积:,故④错误,故选:A.【题目点拨】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.6、B【解题分析】直接根据相似三角形周长的比等于相似比,面积比等于相似比的平方解答.【题目详解】解:∵△ABC与△DEF相似且对应周长的比为4:9,∴△ABC与△DEF的相似比为4:9,∴△ABC与△DEF的面积比为16:81.故选B【题目点拨】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比,面积的比等于相似比的平方.7、A【解题分析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.8、B【解题分析】利用位似性质和网格特点,延长CA到A1,使CA1=2CA,延长CB到B1,使CB1=2CB,则△A1B1C1满足条件;或延长AC到A1,使CA1=2CA,延长BC到B1,使CB1=2CB,则△A1B1C1也满足条件,然后写出点B1的坐标.【题目详解】解:由图可知,点B的坐标为(3,-2),

如图,以点C为位似中心,在网格中画△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,

则点B1的坐标为(4,0)或(-8,0),位于题目图中网格点内的是(4,0),

故选:B.【题目点拨】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的位似比画出图形,注意有两种情况.9、B【分析】过点O作OC⊥AB于点C,由在半径为50cm的⊙O中,弦AB的长为50cm,可得△OAB是等边三角形,继而求得∠AOB的度数,然后由三角函数的性质,求得点O到AB的距离.【题目详解】解:过点O作OC⊥AB于点C,如图所示:

∵OA=OB=AB=50cm,

∴△OAB是等边三角形,

∴∠OAB=60°,∵OC⊥AB故选:B【题目点拨】此题考查了垂径定理、等边三角形的判定与性质、三角函数,熟练掌握垂径定理,证明△OAB是等边三角形是解决问题的关键.10、C【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【题目详解】解:连接、,∵、分别与相切于、两点,∴,,∴.∴,∴.故选C.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.11、C【题目详解】试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.12、C【分析】作BD⊥x轴于D,延长BA交y轴于E,然后根据平行四边形的性质和反比例函数系数k的几何意义即可求得答案.【题目详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据反比例函数系数k的几何意义得,S矩形BDOE=5,S△AOE=,∴平行四边形OABC的面积,故选:C.【题目点拨】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性二、填空题(每题4分,共24分)13、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【题目详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【题目点拨】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.14、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【题目详解】∵a+b2=2,

∴b2=2-a,a≤2,

∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,

当a=2时,

a2+b2可取得最小值为1.

故答案是:1.【题目点拨】考查了二次函数的最值,解题关键是根据题意得出a2+5b2=(a-.15、【解题分析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1

时,y1>y2

.故答案为>16、3n+1.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【题目详解】解:由图可得,

图①中棋子的个数为:3+1=5,

图②中棋子的个数为:5+3=8,

图③中棋子的个数为:7+4=11,

……

则第n个“T”字形需要的棋子个数为:(1n+1)+(n+1)=3n+1,

故答案为3n+1.【题目点拨】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.17、5【分析】根据矩形的性质得出∠DAE=∠AEB,再由AB和∠DAE的正切值可求出BE,利用勾股定理计算出AE的长,再证明△ABE∽△FEA,根据相似三角形的性质可得,代入相应线段的长可得EF的长,再在在Rt△AEF中里利用勾股定理即可算出AF的长,进而得到DF的长.【题目详解】解:∵点在矩形的边上,∴,∴.在中,,∴,∴.∵∴△ABE∽△FEA,∴,即,解得.∵.∴.【题目点拨】此题主要考查了相似三角形的判定与性质,以及勾股定理的应用,关键是掌握相似三角形的判定方法和性质定理.相似三角形对应边的比相等,两个角对应相等的三角形相似.18、或;【分析】由题意可知关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,由于反比例函数的图象有两个分支,因此可以分开来考虑.【题目详解】解:关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,观察图象的交点坐标可得:或.【题目点拨】本题考查一次函数的图象和性质、反比例函数的图象和性质以及一次函数、反比例函数与一次不等式的关系,理解不等式与一次函数和反比例函数的关系式解决问题的关键.三、解答题(共78分)19、第二个月的单价应是70元.【解题分析】试题分析:设第二个月降价元,则由题意可得第二个月的销售单价为元,销售量为件,由此可得第二个月的销售额为元,结合第一个月的销售额为元和第三个月的销售额为元及总的利润为9000元,即可列出方程,解方程即可求得第二个月的销售单价.试题解析:设第二个月的降价应是元,根据题意,得:80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000,整理,得x2-20x+100=0,解得x1=x2=10,当x=10时,80-x=70>50,符合题意.答:第二个月的单价应是70元.点睛:这是一道有关商品销售的实际问题,解题时需注意以下几点:(1)进货成本=商品进货单价×进货数量;(2)销售金额=商品销售单价×销售量;(3)利润=销售金额-进货成本;(4)若商品售价每降价元,销量增加件,则当售价降低元时,销量增加:件.20、(1)见解析;(2)【分析】(1)根据题意画树状图,求得所有等可能的结果;(2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【题目详解】(1)画树状图为:共有8种等可能的结果数;(2)3次摸到的球颜色相同的结果数为2,3次摸到的球颜色相同的概率==.【题目点拨】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.21、(1)证明见解析;(2).【分析】(1)根据题意先由BC=BA求出∠ACB=∠CAB,再根据三角形内角和求出∠ABC=90°,即可得出结论;(2)根据题意先求出半径OD,再根据勾股定理即可求出OC,进而得出CD.【题目详解】解:(1)证明:,,,,即,因此是的切线.(2)由(1)可知,,是的直径,,,,.【题目点拨】本题考查圆的切线的判定和等腰三角形的性质以及勾股定理,熟练掌握切线的判定方法,并据此进行推理计算是解决问题的关键.22、(1)1010;7979;(2)【分析】(1)根据最小的“对称数”1001,最大的“对称数”9999即可解答;(2)先解不等式组确定a的值,然后根据a和题意确定B,即可确定M.【题目详解】解:9999-2020=7979由得,由有四个整数解,得,又为千位数字,所以.设个位数字为,由题意可得,十位数字为,故,.故满足题设条件的为【题目点拨】本题考查新定义的概念,读懂题意,掌握据数的特点,确定字母a取值范围是解答本题的关键.23、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐标,把A、B的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.根据计算即可;(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①点E在F的左边;②点E在F的右边.【题目详解】(3)当x=0时y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).当y=0时x=4,∴B(4,0).把A、B坐标代入得解得:,∴抛物线的解析式为.(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.综上所述:CP的值为3或.【题目点拨】本题是二次函数的综合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论