版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三数学圆的专项培优练习题(含答案)1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE图一图二图三2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B. C.6 D.3.四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(-1,-2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则其中正确的是()A.①②B.①③C.②③D.③④4.如图三,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相交 B.相切 C.相离 D.无法确定5.如图四,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°。点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是()A.19°B.38°C.52°D.76°图四图五6.如图五,AB为直径,弦CD.7.已知AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。9.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.∵AB是⊙O的直径,∴∠AFB=90°。∴∠BAF=90°-∠B。∴∠AEF=∠ADE+∠DAE=90°+18°=108°。在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°。∴∠B=180°-108°=72°。∴∠BAF=90°-∠B=180°-72°=18°。【解析】试题分析:(1)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°。(2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案。8.解:(1)CD是⊙O的切线,。理由如下:连接OC,∵OC=OB,∴∠B=∠BCO。又∵DC=DQ,∴∠Q=∠DCQ。∵PQ⊥AB,∴∠QPB=90°。∴∠B+∠Q=90°。∴∠BCO+∠DCQ=90°。∴∠DCO=∠QCB-(∠BCO+∠DCQ)=180°-90°=90°。∴OC⊥DC。∵OC是⊙O的半径,∴CD是⊙O的切线。9.证明:(1)连接OC,∵AF是⊙O切线,∴AF⊥AB。∵CD⊥AB,∴AF∥CD。∵CF∥AD,∴四边形FADC是平行四边形。∵AB是⊙O的直径,CD⊥AB,∴。设OC=x,∵BE=2,∴OE=x﹣2。在Rt△OCE中,OC2=OE2+CE2,∴,解得:x=4。∴OA=OC=4,OE=2。∴AE=6。在Rt△AED中,,∴AD=CD。∴平行四边形FADC是菱形。(2)连接OF,∵四边形FADC是菱形,∴FA=FC。在△AFO和△CFO中,∵,∴△AFO≌△CFO(SSS)。∴∠FCO=∠FAO=90°,即OC⊥FC。∵点C在⊙O上,∴FC是⊙O的切线。【解析】试题分析:(1)连接OC,由垂径定理,可求得CE的长,又由勾股定理,可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 完善项目管理流程的工作指南计划
- 信阳师范大学《C语言程序设计实验》2021-2022学年第一学期期末试卷
- 西南医科大学《数据结构》2021-2022学年第一学期期末试卷
- 西南交通大学《数据结构与算法设计》2022-2023学年第一学期期末试卷
- 西京学院《室内陈设设计》2022-2023学年第一学期期末试卷
- 西华师范大学《设计基础》2021-2022学年第一学期期末试卷
- 西华大学《信息与网络安全》2022-2023学年第一学期期末试卷
- 学前班安全防火主题班会
- 人教版小学一年级语文下册《识字三》课件
- 西北大学《立体构成》2021-2022学年第一学期期末试卷
- 《企业文化宣讲》课件
- 施工现场安全管理措施
- 2024.8.1十七个岗位安全操作规程手册(值得借鉴)
- 电影《白日梦想家》课件
- 无人机应用与基础操控入门课件
- 药用植物学智慧树知到答案2024年安徽中医药大学
- 人教版4年级上册音乐测试(含答案)
- 南泥湾开荒和杨家岭讲话的资料
- 计算机图形学智慧树知到课后章节答案2023年下北京理工大学
- 三人相声剧本搞笑
- XX音乐厅舞台灯光调试报告
评论
0/150
提交评论