进气和排气外文文献翻译、中英文翻译、外文翻译_第1页
进气和排气外文文献翻译、中英文翻译、外文翻译_第2页
进气和排气外文文献翻译、中英文翻译、外文翻译_第3页
进气和排气外文文献翻译、中英文翻译、外文翻译_第4页
进气和排气外文文献翻译、中英文翻译、外文翻译_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IntakeandExhaust

Tunedintakemanifold

FirstintroducedbyMercedes300SLin1954,tunedintakemanifoldisnotexactlyanewtechnology.Itisdiscussedherejustbecauseitsprincipleisusefultoourfurtherstudyofvariableintakemanifold.

Before1950s,engineersbelievedshortintakemanifoldswerethebesttoenginebreathing.Thentheydiscoveredthatundersomeconditionslongintakemanifoldscouldactuallyimproveoutput,thankstoaso-called"superchargingeffect".Howisthatdone?Let'sseethefollowingillustration:Whenfreshairissuckedintocombustionchamber,itgathersspeedandmomentumintheintakemanifold.Assoonastheinletvalveisclosed,thefast-movingairhitsthevalveandcompresses,generatinghighpressure.Withnowheretogo,thishighpressurebouncesback,travelsalongtheintakemanifold,hitstheplenumattheothersideandbouncesbackagain.Inthisway,thehighpressurebouncesbackandforthalongtheintakemanifolduntiltheinletvalveopensagain,creating

pressurewaves.

Nowtheinterestingthingis:iftheinletvalveopensagainexactlywhenthepressurewavecomesback,thepressurewavewillhelpchargingthecombustionchamberduetoitshighpressure.Thisisnotunlikechargingthecombustionchamberwithalightsupercharger,thuswecallthissuperchargingeffect.

Inordertomatchthetimingofvalveopening,thefrequencyofpressurewaveshallsynchronizewithenginerev,obviously.Thisfrequencyisdependentonthelengthoftheintakemanifold(Linthefigure).Thelongerthelength,thelongerthetimepressurewavetakestobouncebackthusthelowerfrequencyofpressurewaveisattained.Asaresult,alongerintakemanifoldleadstosuperchargingeffectatlowerenginerev.Ashortermanifoldleadstosuperchargingeffectathigherrev.Byselectingasuitablemanifoldlength,wecanobtainthedesiredpowercharacteristic.

Calculationsfoundinordertoachieveusefulsuperchargingeffect,theintakemanifoldshallbeunusuallylong.Ifitistooshort,thepressurewavewillbouncebackandforthtoomanytimesinthemanifoldbeforethevalveopensagain,bythenthehighpressureislargelydiminished.Thereforeatunedintakemanifoldshallbelong.Unfortunately,tunedintakemanifoldworksonlyacrossanarrowrevband.Iftheenginerevsbeyondthatband,thepressurewavewillarrivetoolateintheintakestroke,contributinglittletocharging.Iftheenginerunsbelowthatrevband,thepressurewavewillarrivetheinletvalvebeforeitopens.Inbothcases,thelowpressureareaofpressurewavemayevenworkagainstcylindercharging,hamperingtorqueoutput.

Asportscarenginemayemployashortertunedintakemanifoldtooptimizeitsoutputathighrev(intheexpenseoflowtomediumrevoutput).Onthecontrary,aheavysedanorcommercialvanenginemaychoosealongermanifoldtofavourlow-rpmoutputatthepriceofhigh-revoutput.Asyoucansee,theselectionofmanifoldlengthisalwaysacompromise.That'swhymanymodernenginesturntovariableintakemanifold...

VariableIntakeManifold(VIM)

Variableintakemanifoldhasbeenpopularonnaturallyaspiratedenginessincethemid-1990s.Itisprimarilyemployedtobroadenthetorquecurve,orinorderwords,improvetheflexibilityofengine.Conventionaltunedintakemanifoldfocusesonanarrowrevrange.Incontrast,VIMoffers2ormorestagesofintakeconfigurationtodealwithdifferentenginespeeds.Thissoundsverymuchlikevariablevalvetiming,butVIMisgenerallycheapertoproducebecauseitinvolvesonlysomecastorplasticmanifoldsandafewelectric-operatedvalves.ThatexplainswhyitwasappliedtocheaperandsmallerengineswellbeforeVVTbecamepopular.Today,manyenginesemploybothfeaturestoachievethebestresults.

However,variableintakemanifoldisrarelyusedonturbochargedorsuperchargedengines-Volkswagen's2.0TFSIengineisoneofthefewexceptions.Thisisbecauseforcedinductionoffersastrongsuperchargingeffectalready.ThislargelyreducesthebenefitofVIM,thusitsadditionalcostsandweightaredifficulttojustify.Asmoreandmorecarsareswitchingtoturbochargedengines,thepopularityofVIMisexpectedtocooldownintheforeseeablefuture.

TherearetwokindsVIM:variablelengthtypeandresonancetype.

Variablelengthintakemanifold(VLIM)

Variablelengthintakemanifoldisadirectanswertotheshortcomingofconventionaltunedintakemanifold.Ifafixedlengthintakemanifoldisoptimizedforaverynarrowrevband,whynotgiveit2setsofintakemanifold,onewithshortpipestoservehighrpmwhileanotherwithlongpipestoservelowrpm?Byusingsimplebutterflyvalves,switchingbetweenthelongandshortpipesareeasy.SomeearlyVLIMsystems,likethisFord2.5DuratecV6,usedseparatelongandshortpipes,whichiseasilyvisiblehere.Theshortpipesgotothenearestcylinderbankwhilethelongpipesgototheoppositebank.Sucharrangementisspaceengaging.Thelackofspaceleadstonarrowerpipesused,thusitisnotverysuitabletohigh-performanceengines.ThatiswhymostVLIMsystems,likethisoneonHondaK20Cengine,havetheirlongandshortintakepathssharingthesamemanifolds.Atlowrpm,theairrunsthroughthelongmanifold;Athighrpm,avalveopenstoashort-cutpath,thustheairjoinsthemanifoldatlaterstage.

3-stagevariablelengthintakemanifoldIf2stagesarenotgoodenoughtobroadenthetorquecurve,whynotuse3stages?

ShownhereistheAudi4.2-liter40-valveV8usedinthelate1990stomid-2000s.ItsVLIMsystemislocatedinsidetheV-valleytosavespace.Therearetwoflapsinsidethesystem.Withbothclosed,thefreshairrunsthroughthefulllengthofmanifold.Withoneflapopens,theairrunsthroughashort-cutpath.Withanotherflapopens,anevenshorterpathisestablished.

Thefollowingtorquecurveshowstheeffectofthe3stagesofVLIM:The3-stagesystemisalittlebitmorecomplicatedandspaceengagingthan2-stagesystem.ItwaseventuallyabandonedwhenAudiintroduceddual-continuousVVTandFSItobroadenthetorquecurve.Continuousvariablelengthintakemanifold-e.g.BMWDIVABMW'sDIVA(DifferentiatedVariableAirIntake)systemwasfirstintroducedtotheN52V8engineson7-Seriesin2001.Itistheworld'sfirstcontinuouslyvariablelengthintakemanifold.

Theprincipleissimple.Theintakemanifoldofeachcylinderisarrangedincircularshapeandhalf-recessedintotheV-valley.Theinnerwallisactuallyarotor,onwhichtheairinletislocated.Whentherotorswivels,thepositionoftheairinletmovesinrelationtotheouterhousingofmanifold.Thisvariestheeffectivelengthoftheintakemanifold,fromamaximum673mmto231mm.

Below3500rpm,theDIVAusesthemaximummanifoldlengthtooptimizelow-endtorque.Beyond3500rpm,thelengthisreducedgraduallyaccordingtorev,keepingthesuperchargingeffectatoptimumlevel.

AstheDIVArequiresacircularconstruction,itoccupiesmorespace(especiallyheight)thanotherVLIMsystems.Thispreventitfrombecomingpopular.EvenBMWitselfwasnotkeenonthetechnology.Whenthe4.4-literV8wasenlargedto4.8liters,itsextratorqueallowedBMWtoabandontheDIVAforasimpler2-stageVLIMsystem.ThenextgenerationV8evenswitchedtoturbocharging,soDIVAhasnohopetoreturn.Today,itremainstobetheonlycontinuousvariableintakemanifoldevermadetoproduction.Resonanceintakemanifold

BoxerenginesandV-typeenginesmayemployresonanceintakemanifoldtobroadentorquecurve.Eachbankofcylindersarefedbyacommonplenumchamberthroughseparatepipes.Thetwoplenumchambersareinterconnectedbytwopipesofdifferentdiameters.Oneofthepipescanbeclosedbyavalvecontrolledbyenginemanagementsystem.Thefiringorderisarrangedsuchthatthecylindersbreathalternatelyfromeachchamber,creatingpressurewavesbetweenthem.Ifthefrequencyofpressurewavesmatchestherev,itcanhelpfillingthecylinders,thusimprovedbreathingefficiency.Asthefrequencydependsalsoonthecross-sectionalareaoftheinterconnectingpipes,byclosingoneofthematlowrev,theareaaswellasfrequencyreduce,thusenhanceoutputatlowerrev.Athighrpm,thevalveisopenedthusimproveshigh-speedcylinderfilling.ThisistheresonanceintakesystemonPorsche996GT3.Notethatithas2pipesconnectingbetweenteh2plenumchambers.

ResonanceintakesystemhasbeenusedinvariousPorschesstartingfrom964Carrera.In993,Porschecombineditwithanadditionalvariablelengthmanifoldtoforma3-stageintakesystemnames

VarioRam.However,thesystemisveryspaceconsuming(seerighthandsidepicturebelow),sofrom996forwarditrevertstotheresonanceintakesystemonly,althoughPorschekeepsusingthenameVarioRam.HondaNSXisanotherrareapplicationoftheresonanceintakesystem.

PorscheVarioRamsystemon993A:below5000rpm:longpipes;resonanceintakedisabled.

B:5000-5800rpm:longpipesplusshort-piperesonanceintake,withoneinterconnectedpipeoftheresonanceintakeclosed.

C:above5800rpm:longpipesplusshort-piperesonanceintake,withbothinterconnectedpipesoftheresonanceintakeopened.TunedExhaust&VariableBack-PressureExhaust

Thedesignofexhaustmanifoldisnotunlikeintakemanifold.Exhaustgasemitsintheformofhigh-pressurepulse.Ifyouhaveamicro-analysisonthepulse,youwillfindthepulseisnotalwayshigh-pressure.Infact,shortlyafterthefirstsurgeofpressure,thereisaperiodofnegativepressure(i.e.lowerthanatmosphericpressureor1bar),asshowninthegraphbelow.Why?Becausethegaspulsehasmassandmomentum.Toletyoueasiertounderstand,imaginethegaspulseasabigtruckrunningonhighwayandyouarestandingattheroadside.Whenthetruckpassesyou,yourhairislikelytobesuckedtowardstheroad,becausethereisalow-pressureareatailingthetruck.Thefasterthetruckruns,thelowerpressureisbuilt.Ifwecancollecttheexhaustpulsesfromallcylinderswithequal-lengthexhaustmanifolds(or"header"),wewillgetanevenlydistributedpulsetrain.Interestingly,thisevenlydistributedpulsetrainactuallyhelpssuckingexhaustgasoutofthecombustionchambers,asthelow-pressuretailofonepulsesucksthenextpulse,soforth.Whenbothintakeandexhaustvalvesareopenedduringtheoverlappingperiod,theaforementionedeffectevenhelpssuckingfreshairintothecombustionchamber.Asaresult,thiseffectiscalled"reverse-supercharging"or"scavenging".

Tomakethebestuseofscavengingeffect,anequal-lengthexhaustmanifoldisamust.Besides,toreducetheinterencebetweentheexhaustgaspulsesfromdifferentcylinders,theindividualpipesshallbelong.Thisexplainswhymostracingenginesandhigh-performanceenginesemploytunedexhaustmanifoldswithverylongandstrangelyroutedpipes.Thetunedexhaustmanifold(header)onBMWM3V8.Notetheindividualpipesbeforethecollectorarelongandequal-length.Togetthescavengingeffectworking,thegasflowshouldrunquickenoughintheexhaustmanifold.Takeourtruckexampleagain,ifthetruckiscruisingslowlyonmotorway,thereishardlyanyvacuumeffectyoucanfeel.Exhaustgaspulseisthesame.Tospeedupthegasflow,obviously,thebestwayistousenarrowerexhaustpipesthroughoutthewholeexhaustsystem-includingmanifolds,collectorandmuffler.However,narrowerpipesalsogeneratemoreresistancetogasflow,orwhatwecall"back-pressure".Athighrpmwheretheexhaustgasrateisenormous,theback-pressurewillbebigenoughtooutweighthebenefitsofscavengingeffect.Consequently,narrowexhaustpipesareonlybenefitialtolowrevoutput.Onthecontrary,large-diameterexhaustpipesreduceback-pressureathighrpm,boostingtop-endpower,butatlowrpmtheexhaustgasflowistooslowtogeneratescavengingeffect,soitsoutputsuffersatlowrpm.

Thatiswhymanyperformancecarsoptfor

variableback-pressureexhaust.Atlowrpm,theexhaustgasgoesthroughanarrowpathinthemuffler,whichconsistsofmultiplestagesofsilencer.Thisreturnsrelativelyhighback-pressure,butthenarrowpathresultsinhighflowingspeed,hencegoodscavengingeffect.Athighrev,aby-passvalveopenstoasecondpathforthegastoescape,reducingback-pressureandenhancepoweroutput.Principleofvariableback-pressureexhaustTheby-passalsochangesthesoundquality,makingitlouderand"sportier".Thereforevariableback-pressureexhaustispopularonsportscars.外文文献翻译第第页共9页进气和排气一进气歧管首先介绍了梅赛德斯300SL1954、进气歧管是不是一个新技术。这里讨论的只是因为它的原则是有用的,我们进一步研究可变进气歧管。1950年以前,工程师们认为短进气歧管是发动机呼吸的最佳选择。然后,他们发现,在某些条件下,长进气歧管实际上可以提高产量,由于所谓的“增压效应”。这是怎么做的?让我们看看下面的插图:当新鲜空气吸入燃烧室时,它在进气歧管中聚集速度和动量。当入口阀门关闭时,快速移动的空气撞击阀门并压缩,产生高压。没有地方去,这种高压反弹,沿着进气歧管,击中在另一侧的全会和反弹回来。这样,高压来回沿进气歧管到进气阀再次打开,创建压力波。现在有趣的是:如果进气阀在压力波回来的时候完全打开,压力波会因为高压而帮助燃烧室充电。这与用轻增压器增压燃烧室不同,因此我们称之为增压效应。为了匹配阀门开启的时间,压力波的频率应与发动机转速同步,明显。这个频率取决于进气歧管的长度(L在图中)。长度越长,压力波恢复的时间越长,压力波的频率越低。其结果是,较长的进气歧管导致增压效果在较低的发动机转速。较短的歧管导致增压效应在更高的转速。通过选择合适的歧管长度,我们可以得到所需的功率特性。计算发现,为了实现有益的增压效果,进气歧管应异常长。如果太短,压力波会在阀门开启之前多次在歧管中来回跳动,这时高压会大大降低。因此,调谐进气歧管应该是长的。不幸的是,调谐进气歧管只工作在一个狭窄的转速带。如果发动机转速超过波段,压力波到达进气行程太晚,贡献不充电。如果发动机运行低于转速带,压力波将到达进气阀打开之前。在这两种情况下,压力波的低压区甚至可以对气缸充电,阻碍转矩输出。跑车发动机可以采用较短的调谐进气歧管优化其输出在高转速(费用低到中等转速输出)。与此相反,一个沉重的轿车或商用面包车发动机可以选择一个较长的流形,有利于低转速输出的价格高转速输出。正如你所看到的,流形长度的选择总是一种折衷。这就是为什么许多现代发动机转向可变进气歧管…二可变进气歧管(进气)自上世纪90年代中期以来,可变进气歧管在自然吸气式发动机上得到了广泛的应用,主要用于拓宽扭矩曲线,或者提高发动机的灵活性。传统的调谐进气歧管集中在一个狭窄的转速范围。与此相反,提供了2个或更多的进气配置阶段,以处理不同的发动机转速。这听起来很像可变气门正时,但一般来说生产成本较低,因为它只涉及一些铸造或塑料歧管和一些电动阀。这解释了为什么它被应用到更便宜和更小的发动机VVT走红之前。今天,许多发动机采用这两种功能,以达到最佳效果。然而,可变进气歧管是很少使用涡轮增压或增压引擎-大众的2TFSI发动机是少数例外之一。这是因为强迫感应已经提供了很强的增压作用。这在很大程度上降低了成本效益,因此其额外的成本和重量难以自圆其说。随着越来越多的汽车转向涡轮增压发动机,预计在未来可预见的未来,汽车的普及将会降温。有两种类型:可变长度型和谐振型。三可变长度进气歧管(VLIM)可变长度进气歧管是直接调节传统进气歧管的缺点。如果一个固定长度的进气歧管进行了优化,一个非常狭窄的转速波段,为什么不给它2套进气歧管,一个短管,以高转速,而另一个长管,以低转速?通过使用简单的蝶阀,长和短管道之间的切换是容易的。一些早期的VLIM系统,这样福特2.5DuratecV6,用单独的长和短的管道,这是很明显的在这里。短管到最近的气缸组,而长管转到相反的银行。这样的安排是空间啮合。空间的缺乏导致使用的管道变窄,因此它不是非常适合高性能发动机。这就是为什么大多数VLIM系统,像这样一个在本田K20C引擎,有长、短进气路径共享同一流形。在低转速时,空气流经长歧管;在高转速时,阀门打开一个捷径路径,从而空气加入歧管在稍后阶段。四三级可变长度进气歧管如果2个阶段不够好,以扩大扭矩曲线,为什么不使用3个阶段?这里显示的是奥迪4.2升40阀V8用在上世纪90年代末到2000,VLIM系统位于v-valley节省空间。系统内有两个襟翼。两个封闭的,新鲜的空气贯穿歧管的全长。一个皮瓣打开,空气通过一个捷径路径。随着另一个皮瓣打开,甚至更短的路径建立。以下的扭矩曲线显示的VLIM3阶段的影响:三级系统是更复杂一点,空间啮合比二级系统。最终被放弃,当奥迪推出双连续可变气门正时及FSI扩大扭矩曲线。五连续可变长度进气歧管-例如宝马宝马的Diva(区分可变进气)系统首次引入到N52的V8引擎在7系列2001。它是世界上第一个连续可变长度进气歧管。原理简单。各缸的进气歧管安装在圆形和半凹进v-valley。内壁实际上是一个转子,入口位于其上。当转子旋转,在关系到歧管外壳进风口移动位置。这改变了进气歧管的有效长度,从最大673毫米到231毫米。低于3500转,使用最大的流形长度优化低端扭矩。超过3500转,转速逐渐降低根据长度,保持在最佳水平增压效果。作为主角需要一个圆形建筑,它占用更多的空间(特别是高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论