版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市如东县丰利中学高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A.12π B. C.8π D.4π参考答案:A试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以该球的表面积为,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别为、和.2.在△ABC中,a=2,b=,c=1,则最小角为()A. B. C. D.参考答案:B【考点】HR:余弦定理.【分析】由题意,C最小,根据余弦定理cosC=,可得结论.【解答】解:由题意,C最小,根据余弦定理可得cosC===,∵0<C<π,∴C=.故选B.【点评】本题考查余弦定理的运用,考查学生的计算能力,正确运用余弦定理是关键.3.某人在打靶中,连续射击2次,事件“至多有一次中靶”的互斥事件是()
A.至少有一次中靶
B.两次都中靶
C.两次都不中靶
D.只有一次中靶参考答案:B4.要得到函数的图像,需将函数的图像(
)A.向左平移个单位
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位参考答案:B5.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A. B. C.2 D.3参考答案:D【考点】HR:余弦定理.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.6.在ABC中,角A、B、C所对的边分别为a,b,c,且a>b,则正确的是(
)A.SinA>SinB且CosA>CosB
B.SinA<SinB且CosA<CosBC.SinA>SinB且CosA<CosB
D.SinA<SinB且CosA>CosB参考答案:C7.数a、b满足,下列5个关系式:①;②;③;④;⑤.其中不可能成立的关系有
(
)
A.2个
B.3个
C.4个
D.5个参考答案:A8.已知的三个内角所对边长分别为,向量,,若∥,则(
)
A.
B.
C.
D.参考答案:B9.
如图,一个空间几何体正视图(或称主视图)与侧视图(或称左视图)为全等的等边三角形,俯视图为一个半径为1的圆,那么这个几何体的全面积为.A.
B.
C.
D.
参考答案:B10.已知在△ABC中,,且,则的值为(
)A. B. C. D.参考答案:C【分析】先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.二、填空题:本大题共7小题,每小题4分,共28分11.深圳市的一家报刊摊点,从报社买进《深圳特区报》的价格是每份0.60元,卖出的价格是每份1元,卖不掉的报纸可以以每份0.1元的价格退回报社。在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进
份,才能使每月所获的利润最大?并计算他一个月最多可赚得
元?参考答案:400,3315。12.在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC,则直线PC与AB所成角的大小是________.参考答案:60°13.两平行直线x+3y-4=0与2x+6y-9=0的距离是
。参考答案:14.已知集合A={xx2+(p+2)x+1=0,p∈R},若A∩R+=。则实数P的取值范围为
。参考答案:
P(-4,+∞)15.已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=
_,并求出=_
.
参考答案:1,.【考点】函数的值.【分析】由函数f(x)=(a>0),x1+x2=1,求出f(x1)+f(x2)=f(x1)+f(1﹣x1)=1,从而=1007+f(),由此能求出结果.【解答】解:∵函数f(x)=(a>0),x1+x2=1,∴f(x1)+f(x2)=f(x1)+f(1﹣x1)=+=+==1,∴=1007+f()=1007+=.故答案为:1,.16.设,,,则a、b、c之间的大小关系是_____.参考答案:【分析】根据诱导公式知,可由正弦函数单调性知,有知,即可比较出大小.【详解】因为所以因为知,所以,故填.17.下列程序框图输出的结果__________,__________.参考答案:8;32三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数。(1)若的最小值为,求实数的值;(2)若不存在实数组满足不等式,求实数的取值范围。参考答案:(1),令,则,当时,无最小值,舍去;当时,最小值不是,舍去;当时,,最小值为,综上所述,。
由题意,对任意恒成立。
当时,因且,故,即;当时,,满足条件;当时,且,故,;综上所述,
略19.已知直线(1)若直线l不经过第四象限,求k的取值范围。(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设三角形AOB的面积为S,求S的最小值及此时直线l的方程。参考答案:(1)k≥0;(2)面积最小值为4,此时直线方程为:x﹣2y+4=0【分析】(1)可求得直线l的方程及直线l在y轴上的截距,依题意,从而可解得k的取值范围;(2)依题意可求得A(﹣,0),B(0,1+2k),S=(4k++4),利用基本不等式即可求得答案.【详解】(1)直线l的方程可化为:y=kx+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则,解得k的取值范围是:k≥0(2)依题意,直线l在x轴上的截距为:﹣,在y轴上的截距为1+2k,∴A(﹣,0),B(0,1+2k),又﹣<0且1+2k>0,∴k>0,故S=|OA||OB|=×(1+2k)=(4k++4)≥(4+4)=4,当且仅当4k=,即k=时取等号,故S的最小值为4,此时直线l的方程为x﹣2y+4=0【点睛】本题考查恒过定点的直线,考查直线的一般式方程,考查直线的截距及三角形的面积,考查基本不等式的应用,属于中档题.20.(12分)如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(Ⅰ)求三棱锥E﹣PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.参考答案:考点: 直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.分析: 本题考查了空间几何体的体积、线面位置关系的判定、线面垂直等知识点,(Ⅰ)利用换底法求VP﹣ADE即可;(Ⅱ)利用三角形的中位线及线面平行的判定定理解决;(Ⅲ)通过证明AF⊥平面PBE即可解决.解答: 解:(Ⅰ)三棱锥E﹣PAD的体积.(4分)(Ⅱ)当点E为BC的中点时,EF与平面PAC平行.(5分)∵在△PBC中,E、F分别为BC、PB的中点,∴EF∥PC,又EF?平面PAC,而PC?平面PAC,∴EF∥平面PAC.(8分)(Ⅲ)证明:∵PA⊥平面ABCD,BE?平面ABCD,∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP?平面PAB,∴EB⊥平面PAB,又AF?平面PAB,∴AF⊥BE.(10分)又PA=AB=1,点F是PB的中点,∴AF⊥PB,又∵PB∩BE=B,PB,BE?平面PBE,∴AF⊥平面PBE.∵PE?平面PBE,∴AF⊥PE.(12分)点评: 无论是线面平行(垂直)还是面面平行(垂直),都源自于线与线的平行(垂直),这种“高维”向“低维”转化的思想方法,在解题时非常重要,在处理实际问题的过程中,可以先从题设条件入手,分析已有的平行(垂直)关系,再从结论入手分析所要证明的平行(垂直)关系,从而架起已知与未知之间的桥梁.21.已知向量=(sinθ,1),=(1,cosθ),﹣<θ<.(Ⅰ)若,求θ;(Ⅱ)求|的最大值.参考答案:【考点】9T:数量积判断两个平面向量的垂直关系;9P:平面向量数量积的坐标表示、模、夹角.【分析】(I)根据两个向量垂直的性质可得sinθ+cosθ=0,由此解得tanθ的值,从而得出θ.(II)利用向量的模的定义化简|,再根据三角函数的变换公式结合三角函数的性质求出|的最大值.【解答】解:(I).,??=0?sinθ+cosθ=0,==当=1时有最大值,此时,最大值为.22.(本题满分12分)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于。(1)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《激光的基本技术》课件
- 养老机构入住长者心理咨询、精神支持服务流程1-1-1
- 水痘脑炎病因介绍
- (高考英语作文炼句)第18篇译文老师笔记
- 开题报告:智能现场工程师培养路径实证研究
- 开题报告:支持个性化学习的高校混合教学学生画像构建研究
- 开题报告:义务教育阶段学生作业质量监测与优化研究
- 某电厂扩建工程施工组织设计
- 开题报告:新质生产力背景下应用型高校数字化转型策略研究-以湖北省民办高校为实证对象
- 《货币资金严静》课件
- GB/T 2565-2014煤的可磨性指数测定方法哈德格罗夫法
- 新疆生产建设兵团2022-2023学年数学七上期末质量检测试题含解析
- 2022年中山市房地产市场年度报告-世联研究
- FZ/T 62039-2019机织婴幼儿睡袋
- 【人类命运共同体论文】浅谈“人类命运共同体”
- ARCGIS10基础培训课件
- 部编人教版语文三年级下册第七单元教材分析
- 萨提亚模式家庭治疗课件
- 小企业会计准则报表格式完整
- 弱电工程设计流程及客户需求调查表
- 超星学习通尔雅《人工智能》答案
评论
0/150
提交评论