版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市建业中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线l⊥平面α内所有直线”的充要条件是“l⊥平面α”;③“直线a、b为异面直线”的充分不必要条件是“直线a、b不相交”;④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”.其中正确命题的序号是()A.①②
B.②③C.②④
D.③④参考答案:C2.若向量与向量共线,则的值为
(
)A.
B.
C.
D.参考答案:A略3.若一个圆锥的底面半径是母线长的一半,侧面积和它的体积的数值相等,则该圆锥的底面半径为()A. B. C. D.参考答案:C【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题;方程思想;立体几何.【分析】根据已知中侧面积和它的体积的数值相等,构造关于r的方程,解得答案.【解答】解:设圆锥的底面半径为r,则母线长为2r,则圆锥的高h=r,由题意得:πr?2r=,解得:r=2,故选:C.【点评】本题考查的知识点是旋转体,熟练掌握圆锥的侧面积公式和体积公式,是解答的关键.4.若关于x的方程有两个不相等的实根,则实数的取值范围是
(
)A.
B.
C.
D.参考答案:B5.下列说法正确的是(
)(A)任何事件的概率总是在(0,1)之间(B)频率是客观存在的,与试验次数无关(C)随着试验次数的增加,频率一般会越来越接近概率(D)概率是随机的,在试验前不能确定参考答案:C利用频率与概率的含义及两者的关系进行判断.概率是频率的稳定值,是常数,不会随试验次数的变化而变化.6.若直线与圆有两个不同的交点,则点圆C的位置关系是(
)A.点在圆上 B.点在圆内 C.点在圆外
D.不能确定参考答案:C略7.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞) B.(﹣∞,﹣) C.(﹣,) D.(﹣,1)参考答案:D【考点】函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函数f(x)的定义域是(﹣,1).故选:D.8.以下四个命题:①对立事件一定是互斥事件;②函数的最小值为2;③八位二进制数能表示的最大十进制数为256;④在中,若,,,则该三角形有两解.其中正确命题的个数为(
)A.4
B.3
C.2
D.1参考答案:C9.函数的图象如图,其中为常数.下列结论正确的是(
)A.
B.
C.
D.参考答案:C10.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)参考答案:C【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】可得f(2)=2>0,f(4)=﹣<0,由零点的判定定理可得.【解答】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C【点评】本题考查还是零点的判断,属基础题.二、填空题:本大题共7小题,每小题4分,共28分11.函数的值域是__________.
参考答案:(0,2】略12.sin585°的值为____________.参考答案:【分析】利用三角函数诱导公式和把大角化为小角,进而求值即可。【详解】.【点睛】本题考察利用三角函数诱导公式化简求值.13.不等式x<的解集是.参考答案:(0,1)∪(2,+∞)【考点】指、对数不等式的解法.【专题】函数的性质及应用.【分析】根据已知中不等式可得x>0,结合指数函数和对数函数的单调性,分当0<x<1时,当x=1时和当x>1时三种情况,求解满足条件的x值,综合讨论结果,可得答案.【解答】解:若使不等式x<=x﹣1有意义,x>0,当0<x<1时,原不等式可化为:,解得:x<2,∴0<x<1;当x=1时,x=不满足已知中的不等式,当x>1时,原不等式可化为:,解得:x>2,∴x>2;综上所述,不等式x<的解集是(0,1)∪(2,+∞),故答案为:(0,1)∪(2,+∞).【点评】本题考查的知识点是指数函数和对数函数的单调性,分类讨论思想,难度中档.14.已知样本数据a1,a2,a3,a4,a5的方差s2=(a12+a22+a32+a42+a52﹣80),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为
.参考答案:9【考点】众数、中位数、平均数.【分析】设样本数据a1,a2,a3,a4,a5的平均数为a,推导出5a2=80,解得a=4,由此能求出2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数.【解答】解:设样本数据a1,a2,a3,a4,a5的平均数为a,∵样本数据a1,a2,a3,a4,a5的方差s2=(a12+a22+a32+a42+a52﹣80),∴S2=[(a1﹣a)2+(a2﹣a)2+(a3﹣a)2+(a4﹣a)2+(a5﹣a)2]=[a12+a22+a32+a42+a52﹣2(a1+a2+a3+a4+a5)a+5a2]=(a12+a22+a32+a42+a52﹣5a2)=(a12+a22+a32+a42+a52﹣80),∴5a2=80,解得a=4,∴2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为2a+1=9.故答案为:9.15.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为
参考答案:16.当时,函数的图象与的图象有且只有一个交点,则m的取值范围是
.参考答案:17.若,,,,则=
.参考答案:【考点】角的变换、收缩变换;同角三角函数间的基本关系;两角和与差的余弦函数.【分析】根据条件确定角的范围,利用平方关系求出相应角的正弦,根据=,可求的值.【解答】解:∵∴∵,∴,∴===故答案为:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分)将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为,第二次朝下面的数字为。用表示一个基本事件。(Ⅰ).请写出所有的基本事件;(Ⅱ).求满足条件“为整数”的事件的概率;(Ⅲ).求满足条件“”的事件的概率。参考答案:(Ⅰ)先后抛掷两次正四面体的基本事件:,,,,ks5u
,,,,ks5u,,,,,
,,。共16个基本事件。
………4分
(Ⅱ)用表示满足条件“为整数”的事件,
则包含的基本事件有:,,,,,
,,。共8个基本事件。
∴.故满足条件“为整数”的事件的概率为。……7分
(Ⅲ)用表示满足条件“”的事件,
则包含的基本事件有:,,,,,,,
,,,,,。共13个基本事件。
则.
故满足条件“”的事件的概率
………10分19.计算下列各式的值:
(1)(2)参考答案:(1); (2)
略20.已知集合A={x|log3(x2﹣3x+3)=0},B={x|mx﹣2=0},且A∩B=B,求实数m的值.参考答案:m=0或2或1考点:对数函数的定义域;集合关系中的参数取值问题;交集及其运算.专题:计算题.分析:由集合A={x|log3(x2﹣3x+3)=0}={1,2},B={x|mx﹣2=0}={},A∩B=B,知B=?,或B={1},或B={2}.由此能求出实数m的值.解答:解:∵集合A={x|log3(x2﹣3x+3)=0}={1,2},B={x|mx﹣2=0}={},A∩B=B,∴B=?,或B={1},或B={2}.当B=?时,不存在,∴m=0;B={1}时,=1,∴m=2;B={2}时,=2.∴m=1.所以:m=0或2或1.点评:本题考查对数的性质和应用,解题时要认真审题,注意集合交集的运算和分烃讨论思想的运用.21.(1)
(2)参考答案:略22.集合A={x|1≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(2)求(?RA)∩B
(3)如果A∩C≠?,求a的取值范围.参考答案:【考点】集合关系中的参数取值问题;交、并、补集的混合运算.【专题】计算题;数形结合.【分析】(1)直接根据并集的运算求A∪B.(2)先求?RA,然后利用交集运算求(?RA)∩B.(3)利用A∩C≠?,建立不等式关系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程变更协议书
- 2024年大连智能锁用户隐私保护与信息安全协议
- 2024年商业物业按揭借款协议
- 2024年安全优先:高品质铸铁井盖选购协议
- 2024年奢侈品代理销售多人担保协议
- 2024年城市快运服务协议
- 专利法律风险审计协议
- 2024年优化版建筑材料供应合同
- 2024年工程意向协议书
- 2024年学生档案管理保密合同
- 期中测试卷-2024-2025学年统编版语文二年级上册
- GB/T 44421-2024矫形器配置服务规范
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷诗歌鉴赏试题讲评课件
- 10以内口算题每页50道
- 健康科普宣教课件
- 关注青少年心理健康孩子的人格培养与家庭教育
- 【医学】crrt规范化治疗
- 配电工程施工组织设计(完整版)
- 如何做好施工企业的技术管理工作
- 中国联通某分公司网格化管理工作指导意见
- 内控评价各部门需提供的资料
评论
0/150
提交评论