




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式:速度×时间=路程;路程÷时间=速度;路程÷速度=时间.2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程;相遇路程÷速度和=相遇时间;相遇路程÷相遇时间=速度和.3.追及问题中的数量关系式:速度差×追及时间=追及距离;追及距离÷速度差=追及时间;追及距离÷追及时间=速度差.4.流水问题中的数量关系式:顺水速度=船速十水速;逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似;(2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”.解追及距离=400米;返及时的速度差=200÷-200.由公式列出追及时间=400÷(200÷-200)=400÷(225-200)=400÷25=16(分).答至少经过16分钟两人才能相遇.例2如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解A到D(A→C→B→D)的距离:100×3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220×2=440(米).答这个圆的周长是440米.例3一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是(米)=72(厘米).先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为8(分).再考虑往返的情况,则有表5-1.表5-1经过时间(分)1357911131516在上半圆爬行时间13578在下半圆爬行时间2468所以在15分钟的那次爬行中,两只蚂蚁在下半圆爬行刚好都是8分钟.由此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在得.则150人全部从A到B最短时间为小时答方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A同时出发,最后同时到B,最短时间是小时.例7甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。跑第一圈时,乙速是甲速的,甲跑第二圈时,速度比第一圈提高了,乙跑第二圈时速度比第一圈提高了.已知甲、乙二人第二次相遇点距第一次相遇点190米.问:这个椭圆形跑道周长多少米?分析可设跑道周长为L,第一次相遇时,甲跑了,乙跑了.又设甲速为,则乙速为,而跑第二圈时,甲速为,乙速为.利用相向运动公式求出第二个相遇点,利用两个相遇点之差等于190米列方程求L.解如图5-5(1)及图5-5(2),图5-5(1)图5-5(2)设跑第一圈甲速为(米/秒),于是乙速为(米/秒).又设跑道全长为L(米),则甲、乙第一次相遇点在按甲前进的方向距出发点为.甲跑完第一圈(L),乙跑了.当乙继续跑余下的路程时,甲已折返,且以的速度跑,所以在乙跑完第一圈时,甲已折返跑了的距离.这时,乙折返以跑着.从这时起,甲、乙速度比为.所以,甲跑了余下的的:,而乙跑了余下的的,即乙跑了折返后的.此时与折返后的甲第二次相遇,因此有即所以L=400(米).答跑道周长400米.练习题A组1.甲用40秒可绕一环形跑道跑一圈,乙反方向跑,每隔15秒与甲相遇一次.问乙跑完一圈用多少秒?2.甲、乙从360米长的环形跑道上的同一地点向相同方向跑步.甲每分钟跑305米,乙每分钟跑275米.两人起跑后,问第一次相遇在离起点多少米处?3.有一条长500米的环形跑道.甲、乙两人同时从跑道上某一点出发,反向而跑,1分钟后相遇;如果两人同向而跑,则10分钟后相遇.已知甲跑得比乙快,问甲、乙两人每分钟各跑多少米?4.甲、乙两人同时从A点背向出发,沿400米环形跑道行走,甲每分钟走80米,乙每分钟走50米,这两人至少用多少分钟再在A点相遇?5.小明在360米长的环形跑道上跑了一圈.已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么小明后一半路程用了多少秒?6.一条船往返于甲、乙两港之间,由甲至乙是顺水行驶;由乙至甲是逆水行驶.已知船在静水中的速度为每小时8千米,平时逆行与顺行所用时间的比为2:1,某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9小时,问甲、乙两港相距多少千米?7.两只小爬虫甲和乙,从图5-6上A点同时出发,沿长方形ABCD的边,分别按箭头方向爬行,在离C点32厘米的E点它们第一次相遇;在离D点16厘米的F点第二次相遇,在离A点16厘米的G点第三次相遇,问长方形的边AB长多少厘米?图5-6图5-78.周长400米的圆形跑道上,有相距100米的A、B两点(如图5-7).甲、乙两人分别在A、B两点相背而跑,两人相遇后乙立即转身与甲同向而跑,当甲又跑到A地时,乙恰好又跑到B地.如果以后甲、乙跑的方向和速度都不变,那么甲追上乙时,从出发开始,甲共跑了多少米?B组9.绕湖环行一周是2700米,小张、小王、小李从同一地点出发绕湖行走,小李沿反方向行走,小张的速度是135米/分,小王的速度是90米/分,小李的速度是45米/分.当小张和小李相遇后,马上转身反向而行,不久与小王相遇。问出发后多少时间,小张和小王相遇?10.小张步行从甲村到乙村去,小李骑自行车从乙村往甲村去,他们同时出发,1小时后在途中相遇,他们分别继续前进,小李到达甲村后就立即返回,在第一次相遇后40分钟,小李追上了小张,他们又分别继续前进,当小李到达乙村后又马上折回,问:追上后多少分钟,他们再次相遇?11.绕湖一周是24千米,小张和小王从湖边某一地点同时出发,反向而行,王以4千米/时的速度每走1小时后休息5分钟J张以6千米/时的速度每走50分钟后休息10分钟,问两人出发多少时间后第一次相遇?12.小张、小王、小李同时从湖边同一地点出发,绕湖而走.小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇,那么绕湖一周行程是多少千米?13.游船顺流而下,每小时前进7千米,逆流而上,每小时前进5千米,两条游船同时从同一地方出发,一条顺流而下,然后返回;一条逆流而上,然后返回,结果,1小时后它们同时回到出发点,问在这1小时内有多少时间这两条游船的前进方向相同?14.在400米环形跑道上,A、B两点相距100米(如图5-8所示).甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人跑100米,都要停10秒钟.那么,甲追上乙需要的时间是多少秒.图5-8图5-915.在图5-9中,正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/时,在BC上的速度是120千米/时,在CD上的速度是60千米/时,在DA上的速度是80千米/时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB的中点相遇.如果从PC的中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇二求16.某游艇在一条河流中逆水航行,有一乘客随身带有的空心玻璃球在A桥处失落于水中,但经过20分钟到C处才发现;游艇掉头寻找空心玻璃球,直至更下游的B桥下才拾得.已知A、B两桥相距2千米,求河水的流速.测试题1.如图5-10,在一圆形的跑道上,小明从A点,小强从B点同时出发反向行走(如箭头所示).6分钟后,小明与小强相遇,再过4分钟,小明到达B点.又再过8分钟,小明与小强再次相遇.问:小明环行一周要多少分钟?图5-10图5-112.如图5-11,一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A、B、C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒出的速度是5厘米/秒(的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?3.上午8点08分,小明从家里骑自行车出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后又立刻回头追小明,再追上他的时候,离家恰好是8千米.问:这时是几点几分?4.图5-12中,甲、乙两人分别位于周长为400米的正方形水池相邻的两个顶点上,同时开始沿逆时针方向沿池边行走.甲每分钟走50米,乙每分钟走44米,问:甲、乙两人出发后几分钟才能第一次走在正方形的同一条边上(不含甲、乙两人在正方形相邻顶点的情形)?图5-12图5-135.如图5-13,阴影部分表示学校校园
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年绿色照明项目合作计划书
- 2025年丝绢纺织及精加工产品项目建议书
- 五年级数学(小数乘除法)计算题专项练习及答案
- 三年级数学计算题专项练习及答案集锦
- 右肺低分化腺癌护理查房
- 陕西青年职业学院《药学专业创新创业拓展》2023-2024学年第二学期期末试卷
- 集宁师范学院《物流管理前沿讲座》2023-2024学年第一学期期末试卷
- 集美大学诚毅学院《英语视听说(四)》2023-2024学年第二学期期末试卷
- 青岛工学院《机能实验学》2023-2024学年第二学期期末试卷
- 青岛幼儿师范高等专科学校《建筑给水排水》2023-2024学年第一学期期末试卷
- 智慧教育解决方案
- 2025年共青团入团积极分子考试测试试卷题库及答案
- T-CSOE 0003-2024 井下套管外永置式光缆安装要求
- 合肥鼎材科技有限公司光阻车间光刻胶生产线技术改造项目环评报告书
- 北师大版(2024)七年级下册生物第6章 人体的营养 学情评估测试卷(含答案解析)
- 2025体育单招英语备考100个高频名词精讲(精校打印版)
- 9.1.2 用坐标描述简单几何图形(课件)-2024-2025学年新教材七年级下册数学
- 精神科叙事护理案例分享
- 数学教师个人发展规划
- 金属加工机械制造行业分析报告
- 2025年陕西延长石油集团矿业公司招聘笔试参考题库含答案解析
评论
0/150
提交评论