版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1第十三章积分变换法在复变函数理论中,我们曾用拉普拉斯变换法求解常微分方程.经过变换,常微分方程变成了代数方程,解出代数方程,再进行反演就得到了原来常微分方程的解.积分变换法是通过积分变换简化定解问题的一种有效的求解方法.2对于多个自变量的线性偏微分方程,可以通过实施积分变换来减少方程的自变量个数,直至化为常微分方程,这就使问题得到大大简化,再进行反演,就得到了原来偏微分方程的解.
积分变换法在数学物理方程(也包括积分方程、差分方程等)中亦具有广泛的用途.尤其当泛定方程及边界条件均为非齐次时,用经典的分离变量法求解,就显得有些烦琐和笨挫,而积分变换法为这类问题提供了一种系统的解决方法,并且显得具有固定的程序,按照解法程序进行易于求解.利用积分变换,有时还能得到有限形式的解,而这往往是用分离变量法不能得到的.3
特别是对于无界或半无界的定界问题,用积分变换来求解,最合适不过了.(注明:无界或半无界的定界问题也可以用行波法求解)用积分变换求解定解问题的步骤为:第一:根据自变量的变化范围和定解条件确定选择适当的积分变换;对于自变量在
内变化的定解问题(如无界域的坐标变量)常采用傅氏变换,4第二:对方程取积分变换,将一个含两个自变量的偏微分方程化为一个含参量的常微分方程;第三:对定解条件取相应的变换,导出常微分方程的定解条件;第四:求解常微分方程的解,即为原定解问题的变换;第五:对所得解取逆变换,最后得原定解问题的解.
自变量在内变化的定解问题(如时间变量)常采用拉氏变换.
513.1傅里叶变换法解数学物理定解问题用分离变量法求解有限空间的定解问题时,所得到的本征值谱是分立的,所求的解可表为对分立本征值求和的傅里叶级数.
对于无限空间,用分离变量法求解定解问题时,所得到的本征值谱一般是连续的,所求的解可表为对连续本征值求积分的傅里叶积分.
因此,对于无限空间的定解问题,傅里叶变换是一种很适用的求解方法.6下面的讨论我们假设待求解的函数u及其一阶导数是有限的.
13.1.1弦振动问题例13.1.1求解无限长弦的自由振动定解问题(假定:函数u及其一阶导数是有限的,以后不再特别指出.这一定解问题在行波法中已经介绍.
7【解】应用傅里叶变换,即用遍乘定解问题中的各式,并对空间变量x积分(这里把时间变量看成参数),按照傅里叶变换的定义,我们采用如下的傅氏变换对:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭纺织品的消费者行为分析考核试卷
- 天然气供应保障与灵活性需求考核试卷
- 2021年中西医结合执业医师考试题库(含答案)
- 法律借款担保合同范例
- 法律服务合同模板3篇
- 小型包工合同范例
- 教学加盟合同范例
- 猪场合伙合同范例
- 水泥沙石合同范例
- 玩具长期供货合同范例
- GB/T 18711-2002选煤用磁铁矿粉试验方法
- GA/T 744-2013汽车车窗玻璃遮阳膜
- 蓝色卡通幼儿园关爱眼睛主题班会
- 《中国近现代史纲要》第八章-中华人民共和国的成立与中国社会主义建设道路的探索
- 农产品质量安全培训(完整版)
- 护士值班及交接班制度测试卷附答案
- 音乐剧猫赏析课件
- 上海市普陀区2021-2022学年八年级上学期期末语文试题
- 护士求职应聘幻灯片课件
- 制药工程导论课件
- 某1000MW凝汽式汽轮机机组热力系统设计毕业设计(论文)
评论
0/150
提交评论