人教版高中数学选修4-1全套课件_第1页
人教版高中数学选修4-1全套课件_第2页
人教版高中数学选修4-1全套课件_第3页
人教版高中数学选修4-1全套课件_第4页
人教版高中数学选修4-1全套课件_第5页
已阅读5页,还剩339页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一讲

相似三角形的判定及有关性质一平行线等分线段定理1.理解并掌握平行线等分线段定理及其推论,认识它的图形语言及变式图形.2.能运用平行线等分线段定理任意等分已知线段,能运用推论进行简单的证明或计算.3.会用三角形中位线定理解决问题.1231.平行线等分线段定理

123123名师点拨1.平行线等分线段定理的条件是a,b,c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它们必须与已知的平行线a,b,c相交,即被平行线a,b,c所截.2.平行线的条数可以多于3条,该定理还可以推广.123【做一做1】

如图,l1∥l2∥l3,直线a分别与l1,l2,l3相交于点A,B,C,且AB=BC,直线b分别与l1,l2,l3相交于点A1,B1,C1,则有(

)A.A1B1=B1C1B.A1B1>B1C1C.A1B1<B1C1D.A1B1与B1C1的大小不确定解析:∵l1∥l2∥l3,AB=BC,根据平行线等分线段定理,∴A1B1=B1C1.答案:A1232.推论1知识拓展三角形中位线的性质:三角形的中位线平行于第三边,并且等于第三边长的一半.123【做一做2】

如图,DE是△ABC的中位线,点F是BC上任一点,AF交DE于点G,则有(

)A.AG>GFB.AG=GFC.AG<GFD.AG与GF的大小不确定解析:∵DE是△ABC的中位线,∴在△ABF中,DG∥BF.又AD=DB,∴点G平分AF,即AG=GF.答案:B1233.推论2知识拓展梯形中位线的性质:梯形的中位线平行于两底边,并且等于两底边长和的一半.123【做一做3】

如图,在梯形ABCD中,AD∥BC,AD+BC=10cm,E为AB的中点,点F在DC上,且EF∥AD,则EF的长为(

)A.5cm B.10cm C.20cm D.不确定解析:由推论2知,EF是梯形ABCD的中位线,答案:A平行线等分线段定理的两个推论的证明剖析:(1)推论1,如图①,在△ABC中,B'为AB的中点,过点B'作B'C'∥BC交AC于点C',求证:点C'是AC的中点.证明:如图②,过点A作直线a∥BC,∵BC∥B'C',∴a∥BC∥B'C'.∵AB'=BB',∴AC'=CC',即点C'是AC的中点.(2)推论2,如图③,已知在梯形ACC'A'中,AA'∥CC',B是AC的中点,过点B作BB'∥CC'交A'C'于点B',求证:点B'是A'C'的中点.证明:如图④,∵AA'∥CC',BB'∥CC',∴AA'∥BB'∥CC'.∵AB=BC,∴A'B'=B'C',即点B'是A'C'的中点.题型一题型二题型三【例1】

如图,已知线段AB,求作线段AB的五等分点,并予以证明.分析:利用平行线等分线段定理来作图.作法:如图,(1)作射线AC;(2)在射线AC上以任意取定的长度顺次截取AD1=D1D2=D2D3=D3D4=D4D5;(3)连接D5B;(4)分别过D1,D2,D3,D4作D5B的平行线D1A1,D2A2,D3A3,D4A4,分别交AB于点A1,A2,A3,A4,则点A1,A2,A3,A4将线段AB五等分.题型一题型二题型三证明:过点A作MN∥D5B.则MN∥D4A4∥D3A3∥D2A2∥D1A1∥D5B.∵AD1=D1D2=D2D3=D3D4=D4D5.∴AA1=A1A2=A2A3=A3A4=A4B.∴点A1,A2,A3,A4就是所求的线段AB的五等分点.反思将已知线段AB分成n等份的解题步骤如下:(1)作射线AC(与AB不共线);(2)在射线AC上以任意取定的长度顺次截取AD1=D1D2=D2D3=…=Dn-1Dn;(3)连接DnB;(4)分别过点D1,D2,D3,…,Dn-2,Dn-1作DnB的平行线,分别交AB于点A1,A2,…,An-2,An-1,则点A1,A2,…,An-2,An-1将线段AB分成n等份.题型一题型二题型三【变式训练1】

如图,已知线段AB,请用平行线等分线段定理将线段AB分成两部分,且两部分之比为2∶3.解:已知:线段AB.求作:线段AB上一点O,使AO∶OB=2∶3.作法:(1)如图,作射线AC.(2)在射线AC上以任意长顺次截取AD=DE=EF=FG=GH.(3)连接BH.(4)过点E作EO∥HB,交AB于点O,则点O为所求的点.题型一题型二题型三【例2】

如图,已知AC⊥AB,DB⊥AB,O是CD的中点.求证:OA=OB.分析:因为线段OA和OB有共同端点,所以只需证明点O在AB的垂直平分线上即可.证明:过点O作AB的垂线,垂足为E,如图.∵AC⊥AB,DB⊥AB,∴OE∥AC∥DB.∵O为CD的中点,∴E为AB的中点.又OE⊥AB,∴OA=OB.反思证明两线段相等,往往借助于平行线等分线段定理,转化为证明其他线段相等.这种等价转化的思想要认真领会使用.题型一题型二题型三【变式训练2】

如图,已知在梯形ABCD中,AD∥BC,∠ABC=90°,M是CD的中点.求证:AM=BM.证明:如图,过点M作ME∥BC交AB于点E,∵AD∥BC,∴AD∥EM∥BC.∵M是CD的中点,∴E是AB的中点.∵∠ABC=90°,∴∠MEA=∠MEB=90°,∴ME垂直平分AB.∴AM=BM.题型一题型二题型三【例3】

如图,在梯形ABCD中,AB∥DC,E为AD的中点,EF∥BC.求证:BC=2EF.分析:由于EF∥BC,联系所证明的结果是BC=2EF,由此想到三角形中位线定理,过点A作BC的平行线即可证明.题型一题型二题型三证明:如图,过点A作BC的平行线AG,交DC于点G.∵AB∥DC,∴四边形ABCG是平行四边形.∴AG

BC.∵EF∥BC,∴EF∥AG.∵E为AD的中点,∴F是DG的中点.反思1.如果在三角形中出现中点,那么往往利用三角形中位线的性质来解决有关问题.2.本题也可用平行线等分线段定理来证明,过点E作DC的平行线即可.题型一题型二题型三【变式训练3】

求证:顺次连接四边形四条边的中点,所得的四边形是平行四边形.证明:已知:如图,在四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.证明:连接AC.∵AH=HD,DG=GC,∴HG

EF.∴四边形EFGH是平行四边形.二

平行线分线段成比例定理1.掌握平行线分线段成比例定理及其推论.2.能利用平行线分线段成比例定理及推论解决有关问题.121.平行线分线段成比例定理

12名师点拨1.定理的条件与平行线等分线段定理的条件相同,它需要a,b,c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它们必须与已知的平行线a,b,c相交,即被平行线a,b,c所截.平行线的条数还可以更多.3.当截得的对应线段成比例,且比值为1时,则截得的线段相等,因此平行线分线段成比例定理是平行线等分线段定理的扩充,而平行线等分线段定理是平行线分线段成比例定理的特例;平行线等分线段定理是证明线段相等的依据,而平行线分线段成比例定理是证明线段成比例的依据.12答案:B122.推论

12答案:D12【做一做2-2】

如图,AB∥CD,AC,BD相交于O点,若BO=7,DO=3,AC=25,则AO的长为(

)A.10 B.12.5C.15 D.17.5答案:D比例的有关概念及性质剖析:(1)线段的比:用同一个长度单位去量两条线段,所得的长度比叫做这两条线段的比.(2)比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(5)线段的比与比例线段是既有区别又有联系的两个概念.线段的比是对两条线段而言的,而比例线段是对四条线段而言的.线段的比有顺序性,a∶b与b∶a通常是不相等的;比例线段也有顺序性,如线段a,b,c,d成比例与线段a,c,b,d成比例不同.题型一题型二题型三题型四【例1】

如图,AD为△ABC的中线,在AB上取点E,AC上取点F,使AE=AF.分析:这道题目要证的比例中的线段都没有直接的联系,可以考虑把比例转移,过点C作CM∥EF,交AB于点M,交AD于点N,且BC的中点为D,可以考虑补出一个平行四边形来证明.题型一题型二题型三题型四证明:如图,过点C作CM∥EF,交AB于点M,交AD于点N.∵AE=AF,∴AM=AC.∵AD为△ABC的中线,∴BD=CD.延长AD到点G,使得DG=AD,连接BG,CG,则四边形ABGC为平行四边形.∴AB=GC.又∵AB∥GC,AM=AC,GC=AB,题型一题型二题型三题型四反思1.比例线段常由平行线产生,因而研究比例线段问题应注意平行线的应用,在没有平行线时,可以添加平行线来促成比例线段的产生.2.利用平行线产生比例或转移比例是常用的证题技巧,当题中没有平行线而有必要转移比例时,也常添加辅助平行线,从而达到转移比例的目的.题型一题型二题型三题型四【变式训练1】

如图,在△ABC(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证:BP∶CP=BD∶CE.题型一题型二题型三题型四题型一题型二题型三题型四反思在利用平行线证明或计算时,常常根据已知条件将复杂的图形进行分解,从中找出基本图形,“借图解题”.题型一题型二题型三题型四【变式训练2】

如图,在梯形ABCD中,AD∥BC,F为对角线AC上一点,FE∥BC交AB于点E,DF的延长线交BC于点H,DE的延长线交CB的延长线于点G.求证:BC=GH.题型一题型二题型三题型四题型一题型二题型三题型四反思证明有关线段倒数和的等式时,常用的方法是首先将其变形为线段比的和为定值的形式,然后化归为同一直线上的线段比.题型一题型二题型三题型四【变式训练3】

如图,在梯形ABCD中,AD∥BC,EF经过梯形对角线的交点O,且EF∥AD.(1)求证:OE=OF;题型一题型二题型三题型四题型一题型二题型三题型四【例4】

如图,M是▱ABCD的边AB的中点,直线l过点M分别交AD,AC于点E,F,交CB的延长线于点N,若AE=2,AD=6.求AF∶AC的值.分析:AD∥BC,AM=MB⇒AE=BN⇒AF∶AC的值题型一题型二题型三题型四题型一题型二题型三题型四反思运用平行线分线段成比例定理及推论来计算比值,应分清相关三角形中的平行线段及所截的边,并注意在求解过程中运用比例的等比性质、合比性质等.题型一题型二题型三题型四题型一题型二题型三题型四三

相似三角形的判定及性质1.相似三角形的判定1.了解三角形相似的定义,掌握相似三角形的判定定理以及直角三角形相似的判定方法.2.会证明三角形相似,并能解决有关问题.1231.相似三角形(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数).(2)记法:两个三角形相似,用符号“∽”表示,例如△ABC与△A'B'C'相似,记作△ABC∽△A'B'C'.归纳总结1.三角形相似与三角形全等不同,全等三角形一定相似,但相似三角形不一定全等.2.相似三角形定义中的“对应边成比例”是三组对应边分别成比例.3.相似三角形对应顶点的字母必须写在相应的位置上,这一点与全等三角形是一致的.例如△ABC和△DEF相似,若点A与点E对应,点B与点F对应,点C与点D对应,则记为△ABC∽△EFD.123【做一做1】

已知△ABC∽△A'B'C',下列选项中的式子,不一定成立的是(

)A.∠B=∠B' B.∠A=∠C‘解析:很明显选项A,C,D均成立.因为∠A和∠C'不是对应角,所以∠A=∠C'不一定成立.答案:B1232.相似三角形的判定

123123123知识拓展判定三角形相似的三种基本图形(1)平行线型:(2)相交线型:(3)旋转型:123【做一做2-1】

如图,在△ABC中,FD∥GE∥BC,则与△AFD相似的三角形有(

)A.1个B.2个C.3个D.4个解析:∵

FD∥GE∥BC,∴△AFD∽△AGE∽△ABC,故与△AFD相似的三角形有2个.答案:B1231233.直角三角形相似的判定定理(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似.(3)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.名师点拨直角三角形被斜边上的高分成的两个直角三角形分别与原三角形相似.在证明直角三角形相似时,要特别注意利用直角这一条件.123答案:55°同一法证明几何问题剖析:当直接证明一个几何问题比较困难时,往往采用间接证明的方法.“同一法”就是一种间接证明的方法.应用同一法证明问题时,往往首先作出一个满足命题结论的图形,然后证明图形符合命题的已知条件,确定所作图形与题设条件所指的图形相同,从而证明命题成立.例如,如图,已知PQ,TR为☉O的切线,P,R为切点,PQ∥RT,证明PR为☉O的直径.证明:如图,延长PO交RT于点R',∵PO⊥PQ,∴PR'⊥PQ.∵PQ∥RT,∴PR'⊥RT,即OR'⊥RT.又∵TR为☉O的切线,R为切点,∴OR⊥RT,∴点R'与点R重合,∴PR为☉O的直径.由上例可以看出,同一法证明几何问题的步骤如下:(1)首先作出一个符合结论的图形,然后推证出所作的图形符合已知条件;(2)根据唯一性,证明所作出的图形与已知的图形是全等的或重合的;(3)说明已知图形符合结论.题型一题型二题型三题型四题型一题型二题型三题型四反思1.本题中,∠DAB与∠EAC的相等关系不易直接找到,这里用∠BAC=∠EAD,在∠BAC和∠EAD中分别减去同一个角∠DAC,间接证明∠DAB=∠EAC.2.判定两个三角形相似时,关键是分析已知哪些边对应成比例,哪些角对应相等,根据三角形相似的判定定理,找到符合定理的条件就能推导出结论.题型一题型二题型三题型四【变式训练1】

如图,∠1=∠2,∠3=∠4.求证:△ABD∽△ACE.证明:∵∠1=∠2,∴∠BAC=∠DAE.又∵∠3=∠4,∴△ABC∽△ADE.又∵∠1=∠2,∴△ABD∽△ACE.题型一题型二题型三题型四【例2】

如图,已知在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.题型一题型二题型三题型四反思直角三角形相似的判定方法很多,既可根据一般三角形相似的判定方法判定,又有其特有的判定方法.在求证、识别的过程中,可由已知条件结合图形特征确定合适的方法.题型一题型二题型三题型四题型一题型二题型三题型四题型一题型二题型三题型四分析:所要证明的等式中的四条线段AB,AC,CD,BC分别在△ABC和△BCD中,但这两个三角形不相似,由题意可得BD=CD,这样AB,AC,BD,BC分别在△ABC和△ABD中,只需证明这两个三角形相似即可.题型一题型二题型三题型四题型一题型二题型三题型四反思证明线段成比例,常先把等式中的四条线段分别看成两个三角形的两条边,再证明这两个三角形相似即可,若这四条线段不能分别看成两个三角形的两边,则利用相等线段进行转化,如本题中把CD转化为BD.题型一题型二题型三题型四【变式训练3】

如图,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AC的中点,连接ED,并延长与AB的延长线交于点F.求证:AB∶AC=DF∶AF.证明:∵∠BAC=90°,AD⊥BC,∴∠C=∠BAD,Rt△ADB∽Rt△CAB,∴AB∶AC=BD∶AD.又∵E是AC的中点,∴AE=DE=EC,∴∠C=∠CDE.∴∠BAD=∠CDE=∠BDF.又∠F=∠F,∴△FDB∽△FAD.∴BD∶AD=DF∶AF,即AB∶AC=DF∶AF.题型一题型二题型三题型四【例4】

如图,在△ABC中,D是BC的中点,M是AD上一点,BM,CM的延长线分别交AC,AB于F,E两点.求证:EF∥BC.分析:要证明EF∥BC,想通过角之间的关系达到目的显然是不可能的,而要利用成比例线段判定两条直线平行的判定定理,图中又没有平行条件,因此要设法作出平行线,以便利用判定定理.在作平行线时,要充分考虑到中点D的应用.题型一题型二题型三题型四证明:(方法一)延长AD至点G,使DG=MD,连接BG,CG,如图.∵BD=DC,MD=DG,∴四边形BGCM为平行四边形.∴EC∥BG,FB∥CG.∴EF∥BC.题型一题型二题型三题型四(方法二)过点A作BC的平行线,与BF,CE的延长线分别交于G,H两点,如图.题型一题型二题型三题型四(方法三)过点M作BC的平行线,分别与AB,AC交于G,H两点,如图.题型一题型二题型三题型四反思利用引理来证明两条直线平行的关键是证明其对应线段成比例,这样即可转化为证明线段成比例,其证明方法有:利用中间量,如本题证法一;转化为线段成比例,如本题证法二;既用中间量,又转化为线段成比例,如本题证法三.题型一题型二题型三题型四【变式训练4】

如图,已知点A,B,C在∠O的一边l上,点A',B',C'在另一边l'上,并且直线AB'∥BA',BC'∥CB'.求证:AC'∥CA'.题型一题型二题型三题型四2.相似三角形的性质1.掌握相似三角形的性质.2.能利用相似三角形的性质解决有关问题.相似三角形的性质定理(1)相似三角形对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方;(5)相似三角形外接(内切)圆的直径比、周长比等于相似比,外接(内切)圆的面积比等于相似比的平方.【做一做1】

已知△ABC∽△A'B'C',AB=4,A'B'=3,则BC和B'C'上对应中线的比等于(

)答案:A答案:B答案:C相似三角形性质和全等三角形性质的比较剖析:如下表所示.题型一题型二题型三【例1】

已知△ABC∽△A'B'C',△ABC的周长为60cm,△A'B'C'的周长为72cm,AB=15cm,B'C'=24cm,求:(1)BC,A'B';

(2)AC,A'C'.分析:先由相似三角形周长的比得到相似比,再利用相似比求解.题型一题型二题型三题型一题型二题型三反思利用相似三角形的性质进行有关的计算,往往与相似三角形对应边的比及对应角相等有关.解决此类问题,要善于联想,变换比例式,从而达到求解的目的.题型一题型二题型三【变式训练1】

如果两个相似三角形对应边上的中线之比为3∶4,周长之和是35,那么这两个三角形的周长分别是

(

)A.13和22 B.14和21C.15和20 D.16和19解析:由相似三角形的周长之比、对应中线之比均等于相似比,可得两个相似三角形的周长之比又∵C1+C2=35,∴C1=15,C2=20,即两个三角形的周长分别为15,20.答案:C题型一题型二题型三分析:由于四边形BCDE是不规则四边形,直接求其面积有困难,因此可转化为求△ABC与△ADE的面积的差.题型一题型二题型三反思有关三角形的面积之比问题,除考虑三角形的相似比外,还要注意它们是否等高或等底,若是,则可转化为面积之比等于底边比或相应高之比.题型一题型二题型三【变式训练2】

如图,在△ABC中,DE∥BC,S△ADE∶S△ABC=4∶9.求:题型一题型二题型三题型一题型二题型三【例3】

如图,一天早上,小张正向着教学楼AB走去,教学楼后面有一水塔DC,可过了一会抬头一看:“怎么看不到水塔了?”小张心里很是纳闷.经过了解,教学楼、水塔的高分别是20m和30m,它们之间的距离为30m,小张身高为1.6m.小张要想看到水塔,他与教学楼之间的距离至少应有多少米?分析:此题的解法很多,其关键是添加适当的辅助线,构造相似三角形,利用相似三角形的知识解题.题型一题型二题型三解:如图,设小张在点F与教学楼的距离为x

m时,正好看到水塔.连接FD,由题意知,点A在FD上,过F作FG⊥CD于G,交AB于H,则四边形FEBH、四边形BCGH都是矩形.∵AB∥CD,∴△AFH∽△DFG.∴AH∶DG=FH∶FG,即(20-1.6)∶(30-1.6)=x∶(x+30),解得x=55.2.经检验x=55.2是所列方程的根.故小张与教学楼的距离至少应有55.2

m,才能看到水塔.反思此类问题是利用数学模型解决实际问题,关键在于认真分析题意转化成数学问题,构造相似三角形求解.题型一题型二题型三【变式训练3】

为了测量学校操场上旗杆的高度,小明请同学帮忙,测得同一时刻自己的影长和旗杆的影长分别为0.5m和3m,示意图如图.如果小明身高为1.5m,那么旗杆的高度为

m.

题型一题型二题型三解析:根据题意,可得ED=0.5

m,DB=3

m,CD=1.5

m.根据光线平行的知识可知CE∥AD,故∠E=∠ADB.∵AB⊥EB,CD⊥EB,∴∠CDE=∠ABD=90°.∴△ABD∽△CDE.∴旗杆的高度为9

m.答案:9四

直角三角形的射影定理1.掌握正射影即射影的概念,能画出点和线段的射影.2.理解并掌握射影定理,并能解决有关问题.121.射影从一点向一条直线所引垂线的垂足,叫做这个点在这条直线上的正射影.一条线段的两个端点在一条直线上的正射影之间的线段,叫做这条线段在这条直线上的正射影.点和线段的正射影简称为射影.【做一做1】

线段MN在直线l上的射影不可能是

(

)A.点

B.线段C.与MN等长的线段

D.直线解析:当MN⊥l时,射影是一个点;当MN与l不垂直时,射影是一条线段;特别地,当MN∥l或MN在l上时,射影与MN等长,线段MN的射影不可能是直线.答案:D122.射影定理

12名师点拨1.勾股定理:AC2+BC2=AB2,AD2+CD2=AC2,BD2+CD2=BC2.12【做一做2-1】

如图,在Rt△ABC中,AC⊥CB,CD⊥AB于点D,且CD=4,则AD·DB等于(

)A.16 B.4C.2 D.不确定解析:∵AC⊥CB,CD⊥AB,∴AD·DB=CD2.又∵CD=4,∴AD·DB=42=16.答案:A12【做一做2-2】

如图,在Rt△ABC中,AC⊥BC,点C在AB上的正射影为点D,且AC=3,AD=2,则AB=

.

解析:∵AC⊥CB,又∵点D是点C在AB上的正射影,∴CD⊥AB,∴AC2=AD·AB.又∵AC=3,AD=2,用射影定理证明勾股定理剖析:如图,在Rt△ABC中,AC⊥CB,CD⊥AB于点D,则由射影定理可得AC2=AD·AB,BC2=BD·BA,则AC2+BC2=AD·AB+BD·BA=(AD+BD)·AB=AB2,即AC2+BC2=AB2.由此可见,利用射影定理可以证明勾股定理.过去我们是用面积割补的方法证明勾股定理的,现在我们又用射影定理证明了勾股定理,而且这种方法简洁明快,比用面积割补的方法要方便得多.题型一题型二题型三【例1】

若CD是Rt△ACB斜边AB上的高,AB=25,AC=20,试确定DB和CD的长.分析:先用射影定理求出AD,从而求出DB,再用射影定理求出CD.解:∵AC⊥CB,CD⊥AB,∴AC2=AD·AB,CD2=AD·DB.题型一题型二题型三反思1.本题可先用勾股定理求出BC,再用射影定理求出BD,最后用勾股定理求出CD;此外还有其他方法.2.运用射影定理进行直角三角形中的相关计算,有时需要与直角三角形的其他性质相结合来解.如本题中,直角三角形中的六条线段AC,BC,CD,AD,DB,AB,若已知其中任意两条线段的长,就可以计算出其余线段的长.题型一题型二题型三【变式训练1】

如图,在Rt△ABC中,CD为斜边AB上的高.若AD=2cm,DB=6cm,求CD,AC,BC的长.解:∵AC⊥CB,CD⊥AB,∴CD2=AD·DB=2×6=12,题型一题型二题型三【例2】

如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC交AC于点E,EF⊥BC于点F.求证:EF∶DF=BC∶AC.题型一题型二题型三反思利用射影定理证明比例式成立的证明问题在本部分中比较常见,在解题过程中,应弄清射影定理中成比例的线段,再结合比例的基本性质加以灵活运用.题型一题型二题型三题型一题型二题型三题型一题型二题型三易错点:射影定理记忆不牢而致错【例3】

在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD∶AD=1∶9,则tan∠BCD=

.

错解:在Rt△ACB中,设BD=x,则AD=9x,又∵CD2=AD·AB,错因分析:本题的错因是没有准确地记住射影定理中的三组公式,误认为CD2=AD·AB致误.题型一题型二题型三正解:在Rt△ACB中,CD⊥AB,由射影定理得CD2=AD·BD.又BD∶AD=1∶9,令BD=x,则AD=9x(x>0).∴CD2=9x2.∴CD=3x.第二讲

直线与圆的位置关系一圆周角定理1.了解圆心角定理,并能应用定理解决问题.2.理解圆周角定理及其两个推论,并能应用定理解决有关问题.1231.圆周角定理

123名师点拨定理中的圆心角与圆周角一定是对着同一条弧,它们才有上面定理中所说的数量关系.123【做一做1】

如图,在☉O中,∠BAC=25°,则∠BOC等于(

)A.25°

B.50°C.30°

D.12.5°解析:根据圆周角定理,得∠BOC=2∠BAC=50°.答案:B 1232.圆心角定理

123答案:30°1233.圆周角定理的推论(1)推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.(2)推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.123名师点拨1.圆心角的度数和它所对的弧的度数相等,但并不是“圆心角等于它所对的弧”.2.“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”.3.由弦相等推出弧相等时,这里的弧要求同圆或等圆中同是优弧或同是劣弧,一般选劣弧.4.在同圆或等圆中,两个圆心角、两条弧、两条弦三组量之间的相等关系简单地说,就是圆心角相等能推出弧相等,进而能推出弦相等.123【做一做3-1】

如图,在☉O中,∠BAC=60°,则∠BDC等于(

)A.30° B.45°C.60° D.75°解析:∠BDC=∠BAC=60°.答案:C123答案:A圆周角定理的理解剖析:(1)应用圆周角定理时,要注意的问题如下:圆周角定理推论1中,同圆或等圆中,相等的圆周角所对的弧相等.这一定理成立的前提是同圆或等圆,否则不成立.(2)在圆周角定理的证明中,运用了数学中分类讨论和化归的思想以及归纳的证明方法.这个定理是从特殊情况入手研究的,首先研究当角的一边过圆心时,得到圆周角与同弧所对的圆心角的关系,然后研究当角的一边不经过圆心时,圆周角与同弧所对的圆心角之间的关系.当角的一边不经过圆心时,又有两种情况:一是圆心在圆周角内部;二是圆心在圆周角外部.经过这样不同情况的讨论,最后得到:不论角的一边是否经过圆心,都有定理中的结论成立.在几何里,许多定理的证明,都需要像这样分情况进行讨论,后面还会遇到这种分情况证明的定理.(3)通过圆周角定理的分析、证明,我们可以看到,在几何里讨论问题时,常常从特殊情况入手,因为在特殊情况下问题往往容易解决.如图,中间一种情况为圆周角的一边经过圆心,此时∠AOB=2∠C很容易证明,特殊情况下的问题解决之后,再想办法把一般情况下的问题转化为特殊情况下的问题,如图中的左图和右图的情况,通过辅助线,把它们变成中间图中的两个角的和或差,这样利用特殊情况下的结论,便可使一般情况下的结论得证.题型一题型二题型三【例1】

如图,△ABC的三个顶点都在☉O上,∠BAC的平分线与BC边和☉O分别交于点D,E.(1)指出图中相似的三角形,并说明理由;(2)若EC=4,DE=2,求AD的长.分析:(1)本题证明两个三角形相似,要用三角形相似的判定定理,而其中角的条件由同弧所对的圆周角相等得出;(2)要求线段长度,先由三角形相似得线段成比例,再求其长度.题型一题型二题型三解:(1)∵AE平分∠BAC,∴∠BAD=∠EAC.又∵∠B=∠E,∴△ABD∽△AEC.∵∠B=∠E,∠BAE=∠BCE,∴△ABD∽△CED,△AEC∽△CED.(2)∵△CED∽△AEC,

∴CE2=ED·AE,∴16=2AE,∴AE=8.∴AD=AE-DE=6.反思求圆中线段长时,常先利用圆周角定理及其推论得到相似三角形,从而得到成比例线段,再列方程求得线段长.题型一题型二题型三证明:∵BC是☉O的直径,∴∠BAC为直角.又∵AD⊥BC,∴Rt△BDA∽Rt△BAC.∴∠BAD=∠ACB.∴∠BAD=∠FBA.∴△ABE为等腰三角形.∴AE=BE.题型一题型二题型三题型一题型二题型三反思1.有关圆的题目中,圆周角与它所对的弧经常相互转化,即欲证明圆周角相等,可转化为证明它们所对的弧相等;要证明线段相等也可以转化为证明它们所对的弧相等,这是证明圆中线段相等的常见策略.2.若已知条件中出现直径,则常用到“直径所对的圆周角为直角”这一性质解决问题.题型一题型二题型三【变式训练2】

如图,△ABC内接于☉O,D,E在BC边上,且BD=CE,∠1=∠2.求证:AB=AC.题型一题型二题型三题型一题型二题型三易错点:误认为同弦或等弦所对圆周角相等而致错【例3】

如图,若∠BAD=75°,则∠BCD=

.

错解:∵∠BAD和∠BCD所对的弦都是BD,∴∠BAD=∠BCD.∴∠BCD=75°.错因分析:错解中,没有注意到圆周角∠BAD和∠BCD所对的弧不相等,导致得到错误的结论∠BAD=∠BCD.题型一题型二题型三答案:105°反思同弦或等弦所对的圆周角不一定相等.当弦是直径时,同弦或等弦所对的圆周角相等,都等于90°;当弦不是直径时,该弦将圆周分成两条弧:优弧和劣弧,若圆周角的顶点同在优弧上或同在劣弧上,同弦或等弦所对的圆周角相等;若一个圆周角的顶点在优弧上,另一个圆周角的顶点在劣弧上,则同弦或等弦所对的圆周角不相等,它们互补(如本题).二

圆内接四边形的性质与判定定理1.了解圆内接四边形的概念,掌握圆内接四边形的性质定理及其应用.2.理解圆内接四边形的判定定理及其推论,并能解决有关问题.3.了解反证法在证明问题中的应用.12341.性质定理11234【做一做1】

四边形ABCD内接于圆O,∠A=25°,则∠C等于(

)A.25° B.75° C.115° D.155°解析:∵四边形ABCD内接于圆,∴∠A+∠C=180°.又∵∠A=25°,∴∠C=180°-∠A=155°.答案:D12342.性质定理21234【做一做2】

如图,四边形ABCD内接于圆O,延长AB到点E,若∠ADC=32°,则∠CBE等于(

)A.32° B.58° C.64° D.148°解析:∵四边形ABCD内接于圆O,∴∠CBE=∠ADC=32°.答案:A1234归纳总结1.利用这两个性质定理,可以借助圆变换角的位置,得到角的相等关系或互补关系,再进行其他的计算或证明.2.利用这两个定理可以得出一些重要结论,如内接于圆的平行四边形是矩形;内接于圆的菱形是正方形;内接于圆的梯形是等腰梯形等.12343.圆内接四边形判定定理

1234【做一做3】

下列四边形的四个顶点共圆的是(

)A.梯形

B.矩形C.平行四边形 D.菱形答案:B 12434.推论

归纳总结性质定理1和判定定理互为逆定理,性质定理2和判定定理的推论互为逆定理.1243【做一做4】

如图,四边形ABCD的边AB的延长线上有一点E,且BC=BE,∠D=80°,∠E=50°.求证:四边形ABCD内接于圆.证明:∵BC=BE,∴∠E=∠BCE.则∠EBC=180°-2∠E=80°,∴∠EBC=∠D.∴四边形ABCD内接于圆.1.圆内接四边形的性质定理与判定定理剖析:(1)圆的内接四边形的外角及内对角如图,圆内接四边形ABCD的内角∠BAD的两个补角∠1和∠2称为圆内接四边形的外角.因为∠BAD和∠C两角相对,所以∠C称为∠1与∠2的内对角,且它们满足∠BAD+∠C=180°,∠1=∠2=∠C.(2)判定定理与性质定理的内在联系性质定理1和判定定理互为逆定理,性质定理2与判定定理的推论互为逆定理.2.与圆内接四边形有关的相似三角形剖析:如图,通过掌握与圆有关的相似三角形的基本图形,可以在解题过程中遵循正确的思维规律和解题步骤,对图形运用自如,融为一体,做出连贯反应.基本图形1 基本图形2 基本图形3基本图形1:圆的任意内接四边形ABCD,有△AED∽△BEC,△DEC∽△AEB.基本图形2:四边形ABCD内接于☉O,AD,BC的延长线交于点F,其中相似三角形有△AED∽△BEC,△AEB∽△DEC,△CDF∽△ABF,△ACF∽△BDF.基本图形3:四边形ABCD内接于☉O,AD,BC的延长线交于点F,AB为直径,其中相似三角形有△DEC∽△AEB,△FDC∽△FBA,Rt△AFC∽Rt△BFD∽Rt△AED∽Rt△BEC.题型一题型二题型三【例1】

如图,在△ABC中,E,D,F分别为AB,BC,AC的中点,且AP⊥BC于点P.求证:E,D,P,F四点共圆.分析:连接PF,转化为证明∠FED=∠FPC,先利用中点证明∠FED=∠C,再利用AP⊥BC证明PF=FC,得∠C=∠FPC,即得出∠FED=∠FPC.题型一题型二题型三证明:如图,连接PF.∵AP⊥BC,F为AC的中点,∴PF是Rt△APC斜边上的中线.∴PF=FC,∴∠FPC=∠C.∵E,F,D分别为AB,AC,BC的中点,∴EF∥CD,ED∥FC.∴四边形EDCF为平行四边形.∴∠FED=∠C,∴∠FPC=∠FED.∴E,D,P,F四点共圆. 题型一题型二题型三反思判定四点共圆的方法:①如果四个点与一定点距离相等,那么这四个点共圆;②如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆;③如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆(如本题);④与线段两个端点连线的夹角相等(或互补)的点连同该线段两个端点在内共圆.题型一题型二题型三【变式训练1】

在锐角三角形ABC中,AD是BC边上的高,DE⊥AB,DF⊥AC,点E,F是垂足.求证:E,B,C,F四点共圆.题型一题型二题型三证明:如图,连接EF,∵DE⊥AB,DF⊥AC,∴A,E,D,F四点共圆.∴∠1=∠2.∵AD是BC边上的高,∴∠1+∠C=∠2+∠C=90°.∴∠BEF+∠C=180°.∴B,E,F,C四点共圆.题型一题型二题型三【例2】

如图,已知四边形ABCD内接于☉O,延长AB和DC相交于点E,EG平分∠AED,且与BC,AD分别交于点F,G.求证:∠CFG=∠DGF.分析:由∠BEF=∠DEG,可证明△EBF∽△EDG,又∠BFE与∠CFG是对顶角,问题获证.题型一题型二题型三证明:∵四边形ABCD内接于☉O,∴∠EBF=∠ADE.又EF是∠AED的平分线,则∠BEF=∠DEG,∴△EBF∽△EDG.∴∠EFB=∠DGF.又∵∠EFB=∠CFG,∴∠CFG=∠DGF.反思当已知条件中出现圆内接四边形时,常用圆内接四边形的性质定理来获得角相等或互补,从而为证明三角形相似或两条直线平行等问题创造条件.题型一题型二题型三【变式训练2】

如图,两圆☉O1,☉O2相交于点A,B.☉O1的弦BC交☉O2于点E,☉O2的弦BD交☉O1于点F.求证:(1)若∠DBA=∠CBA,则DF=CE;(2)若DF=CE,则∠DBA=∠CBA.题型一题型二题型三证明:(1)如图,连接AE,AF,AC,AD,则∠3=∠4,∠5=∠6.∴AD=AE,∴△ACE≌△AFD.故CE=DF.(2)由(1)得∠3=∠4,∠5=∠6.又∵DF=CE,∴△ACE≌△AFD,∴AD=AE,∴∠1=∠2,即∠DBA=∠CBA.题型一题型二题型三易错点:错用圆内接四边形的外角等于它的内角的对角这一定理而致错【例3】

如图,四边形ABCD是☉O的内接四边形,E为AB的延长线上一点,∠CBE=40°,则∠AOC等于(

)A.20°

B.40°C.80°

D.100°错解:∵四边形ABCD是☉O的内接四边形,∴根据圆内接四边形的外角等于它的内角的对角,得∠CBE=∠COA=40°.故选B.错因分析:上述解答错误的原因是对性质定理2的理解不透彻,不能准确理解“外角等于它的内角的对角”的含义.所谓的“内角的对角”通常是指圆周角.题型一题型二题型三正解:∵四边形ABCD是圆内接四边形,且∠CBE=40°,由圆内接四边形的性质知∠D=∠CBE=40°.又由圆周角定理知∠AOC=2∠D=80°.答案:C三

圆的切线的性质及判定定理1.理解切线的性质定理及其两个推论,并能解决相关的计算或证明问题.2.掌握切线的判定定理,会判定直线与圆相切.12341.切线的性质定理

1234【做一做1】

如图,直线l与☉O相切于点A,点B是l上异于点A的一点,则△OAB是(

)A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形解析:∵l与☉O相切,∴l⊥OA.∴OA⊥AB.∴∠OAB=90°,△OAB是直角三角形.答案:C12342.性质定理推论11234【做一做2】

如图,直线l与☉O相切,点P是l上任一点,当OP⊥l时,则(

)A.点P不在☉O上B.点P在☉O上C.点P不可能是切点D.OP大于☉O的半径解析:由于OP⊥l,则P是l与☉O的切点,则点P在☉O上.答案:B12343.性质定理推论21234归纳总结由性质定理及其两个推论,可得出如下的结论:如果一条直线具备下列三个条件中的任意两个,(1)垂直于切线;(2)过切点;(3)过圆心,就可推出第三个.于是在利用切线的性质时,过切点的半径是常作的辅助线.1234【做一做3】

直线l与☉O相切于点P,在经过点P的所有直线中,经过点O的直线有(

)A.1条 B.2条 C.3条 D.无数条解析:过P且垂直于l的直线仅有1条,此时点O在该垂线上,故选A.答案:A12434.切线的判定定理

1243名师点拨在切线的判定定理中,要分清定理的条件和结论,强调“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线,如图①②中的例子就不能同时满足这两个条件,所以都不是圆的切线.1243【做一做4】

如图,AB经过☉O上一点C,且OA=OB,AC=CB.求证:直线AB是☉O的切线.分析:转化为证明OC⊥AB即可.证明:如图,连接OC.∵OA=OB,∴△OAB是等腰三角形.又∵AC=CB,∴OC⊥AB.又∵OC是☉O的半径,∴直线AB是☉O的切线.判定切线的方法剖析:判定切线通常有三种方法:(1)定义法:和圆有唯一一个公共点的直线是圆的切线;(2)距离法:到圆心的距离等于半径的直线是圆的切线;(3)定理法:经过半径的外端并且垂直于这条半径的直线是圆的切线.“经过半径的外端并且垂直于这条半径的直线是圆的切线”是“到圆心的距离等于半径的直线是圆的切线”的定理具体化.在使用时要根据题目的具体要求选取合适的方法:若已知要证的切线经过圆上一点,则需把这点与圆心相连,证明这条直线与此半径垂直,即用定理法;若不能确定已知要证的切线与圆有公共点,则需先向这条直线作垂线,再证明此垂线段是圆的半径,即用距离法证明;通常不用定义法证明.题型一题型二【例1】

如图,在△ABC中,AB=AC,以AB为直径的☉O交BC于点D,过点D作☉O的切线交AC于E.求证:DE⊥AC.分析:由DE是☉O的切线,知OD⊥DE,故要证明DE⊥AC,只需要证明OD∥AC即可.题型一题型二证明:如图,连接OD,AD.∵AB为☉O的直径,∴AD⊥BC.∵AB=AC,即△ABC为等腰三角形,∴AD为BC边上的中线,即BD=DC.又∵OA=OB,∴OD为△ABC的中位线.∴OD∥AC.∵DE切☉O于D,∴OD⊥DE.∴DE⊥AC.反思利用圆的切线的性质来证明或进行有关的计算时,连接圆心和切点的半径是常用辅助线.题型一题型二【变式训练1】

如图,已知∠C=90°,点O在AC上,CD为☉O的直径,☉O切AB于点E,若BC=5,AC=12,求☉O的半径.题型一题型二题型一题型二【例2】

如图,AB是☉O的直径,AE平分∠BAF交☉O于点E,过E作直线与AF垂直,交AF的延长线于点D,且交AB的延长线于点C.求证:CD是☉O的切线.分析:只需证明OE⊥CD即可.题型一题型二证明:如图,连接OE.∵OA=OE,∴∠1=∠2.又∵AE平分∠BAF,∴∠2=∠3.∴∠1=∠3.∴OE∥AD.∵AD⊥CD,∴OE⊥CD.∴CD与☉O相切于点E.反思根据圆的切线性质判定圆的切线是平面几何中最常用的方法.这种方法的步骤是:①连接圆心和公共点;②转化为证明直线过公共点且垂直于所连线段.由此看出,证明圆的切线可转化为证明直线垂直.题型一题型二【变式训练2】

如图,AB是☉O的直径,BC是☉O的切线,切点为B,OC平行于弦AD.求证:DC是☉O的切线.证明:如图,连接OD.∵OC∥AD,∴∠1=∠3,∠2=∠4.又∵∠1=∠2,∴∠4=∠3.∵OD=OB,OC=OC,∴△ODC≌△OBC.∴∠ODC=∠OBC=90°.又∵点D在圆上,∴DC是☉O的切线.四

弦切角的性质1.理解弦切角的概念,会判断弦切角.2.掌握弦切角定理的内容,并能利用定理解决有关问题.121.弦切角顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.名师点拨弦切角可分为三类:(1)圆心在角的外部,如图①;(2)圆心在角的一边上,如图②;(3)圆心在角的内部,如图③.12【做一做1】

如图,EC与☉O相切于点B,AB是☉O的一条弦,D是☉O上异于点A,点B的一点,则下列为弦切角的是(

)A.∠ADB

B.∠AOB

C.∠ABC

D.∠BAO解析:∠ADB是圆周角,∠AOB是圆心角,∠ABC是弦切角,∠BAO不是弦切角.答案:C122.弦切角定理

12归纳总结1.弦切角定理的推论:若一个圆的两个弦切角所夹的弧相等,则这两个弦切角也相等.2.弦切角定理也可以表述为弦切角的度数等于它所夹的弧的度数的一半.这就建立了弦切角与弧之间的数量关系,它为直接依据弧进行角的转换确立了基础.123.圆心角、圆周角、弦切角的比较.12【做一做2-1】

如图,MN与☉O相切于点M,Q和P是☉O上两点,∠PQM=70°,则∠NMP等于(

)A.20°B.70°C.110°D.160°解析:∵∠NMP是弦切角,∴∠NMP=∠PQM=70°.答案:B12【做一做2-2】

过圆内接△ABC的顶点A引☉O的切线交BC的延长线于点D,若∠B=35°,∠ACB=80°,则∠D为

(

)A.45° B.50° C.55° D.60°解析:如图,∵AD为☉O的切线,∴∠DAC=∠B=35°.∵∠ACB=80°,∴∠D=∠ACB-∠DAC=80°-35°=45°.答案:A对弦切角的理解剖析:弦切角的特点:(1)顶点在圆上;(2)一边与圆相交;(3)另一边与圆相切.弦切角定义中的三个条件缺一不可.如图①②③④中的角都不是弦切角.图①中,缺少“顶点在圆上”的条件;图②中,缺少“一边和圆相交”的条件;图③中,缺少“一边和圆相切”的条件;图④中,缺少“顶点在圆上”和“另一边和圆相切”两个条件.题型一题型二题型三【例1】

如图,AD是△ABC中∠BAC的平分线,☉O经过点A且与BC切于点D,与AB,AC分别相交于点E,F.求证:EF∥BC.分析:连接DF,于是∠FDC=∠DAC,根据AD是∠BAC的平分线,有∠BAD=∠DAC,而∠BAD与∠EFD对着同一段弧,由此得到∠EFD与∠FDC的相等关系,根据内错角相等,可以断定两条直线平行.题型一题型二题型三证明:如图,连接DF,∵AD是∠BAC的平分线,∴∠BAD=∠DAC.∵∠EFD=∠BAD,∴∠EFD=∠DAC.∵BC切☉O于点D,∴∠FDC=∠DAC.∴∠EFD=∠FDC.∴EF∥BC.反思当已知条件中出现圆的切线时,借助于弦切角定理,常用角的关系证明两条直线平行:①内错角相等,两条直线平行;②同位角相等,两条直线平行;③同旁内角互补,两条直线平行等.证明时可以根据图形与已知条件合理地选择.题型一题型二题型三【变式训练1】

如图,△ABC内接于☉O,AB的延长线与过点C的切线GC相交于点D,BE与AC相交于点F,且CB=CE.求证:BE∥DG.证明:∵CG为☉O的切线,∴∠EBC=∠GCE.∴∠EBC=∠E.∴∠E=∠GCE.∴DG∥BE.题型一题型二题型三【例2】

已知△ABC内接于☉O,∠BAC的平分线交☉O于点D,CD的延长线交过点B的切线于点E.分析:直接证明此等式有一定的难度,可以考虑把它分解成两个比例式的形式,借助相似三角形的性质得出结论.题型一题型二题型三证明:连接BD,如图.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∠BCD=∠BAD,∠CBD=∠CAD,∴∠BCD=∠CBD.∴BD=CD.题型一题型二题型三又BE为☉O的切线,∴∠EBD=∠BCD.在△BED和△CEB中,∠EBD=∠ECB,∠BED=∠CEB,∴△BED∽△CEB.反思已知直线与圆相切,证明线段成比例时,常先利用弦切角定理和圆周角定理得到角相等,再通过三角形相似得到成比例线段.题型一题型二题型三【变式训练2】

如图,AB为☉O的直径,弦CD∥AB,AE切☉O于点A,交CD的延长线于点E.求证:BC2=AB·DE.证明:如图,连接BD,OD,OC.∵AE切☉O于点A,∴∠EAD=∠ABD,且AE⊥AB.又AB∥CD,∴AE⊥CE,∴∠E=90°.∵AB为☉O的直径,∴∠ADB=90°.∴∠E=∠ADB,∴△ADE∽△BAD,∴AD2=AB·DE.∵CD∥AB,∴∠1=∠2,∠3=∠4.∵∠2=∠4,∴∠1=∠3,∴AD=BC,∴BC2=AB·DE.题型一题型二题型三易错点:忽视弦切角的一边是切线致错【例3】

如图,△ABC内接于☉O,AD⊥AC,∠C=32°,∠B=110°,则∠BAD=

.

错解:∵AD⊥AC,∴∠BAD是弦切角.∴∠BAD=∠C.又∠C=32°,∴∠BAD=32°.错因分析:错解中,误认为∠BAD是弦切角.虽然AD⊥AC,但AD不是切线.题型一题型二题型三正解:∵∠C+∠B+∠BAC=180°,∴∠BAC=180°-∠C-∠B=38°.又A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论