2024届山东省沂南县数学九上期末学业质量监测模拟试题含解析_第1页
2024届山东省沂南县数学九上期末学业质量监测模拟试题含解析_第2页
2024届山东省沂南县数学九上期末学业质量监测模拟试题含解析_第3页
2024届山东省沂南县数学九上期末学业质量监测模拟试题含解析_第4页
2024届山东省沂南县数学九上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省沂南县数学九上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>42.若关于的一元二次方程的一个根是,则的值是()A.1 B.0 C.-1 D.23.下列四个图形是中心对称图形().A. B. C. D.4.函数的自变量的取值范围是()A. B. C. D.且5.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()

A.30 B.27 C.14 D.326.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.60° B.72° C.78° D.144°7.二次函数的图象与y轴的交点坐标是()A.(0,1) B.(1,0) C.(-1,0) D.(0,-1)8.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.9.下列运算正确的是()A.a•a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a210.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135° B.122.5° C.115.5° D.112.5°11.把抛物线向右平移l个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A. B.C. D.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.≤b≤1 B.≤b≤1 C.≤b≤ D.≤b≤1二、填空题(每题4分,共24分)13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是____.14.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=_____.15.如图,在中,,,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么______.16.因式分解:ax3y﹣axy3=_____.17.已知△ABC与△DEF是两个位似图形,它们的位似比为,若,那么________18.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.三、解答题(共78分)19.(8分)如图,AB为⊙O的弦,若OA⊥OD,AB、OD相交于点C,且CD=BD.(1)判定BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.20.(8分)已知二次函数的图象经过点.(1)求这个函数的解析式;(2)画出它的简图,并指出图象的顶点坐标;(3)结合图象直接写出使的的取值范围.21.(8分)如图,是半径为1的的内接正十边形,平分(1)求证:;(2)求证:22.(10分)如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线的解析式为.(1)如图一,若抛物线经过,两点,直接写出点的坐标;抛物线的对称轴为直线;(2)如图二:若抛物线经过、两点,①求抛物线的表达式.②若点为线段上一动点,过点作交于点,过点作于点交抛物线于点.当线段最长时,求点的坐标;(3)若,且抛物线与矩形没有公共点,直接写出的取值范围.23.(10分)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知(一次拿到7元本).(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.24.(10分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为____.25.(12分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.26.先化简再求值:其中.

参考答案一、选择题(每题4分,共48分)1、B【题目详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.2、B【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一元一次方程即可.【题目详解】把x=1代入x2-x+m=1得1-1+m=1,解得m=1.故选B.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3、C【分析】根据中心对称图形的概念对各选项分析判断即可得解.【题目详解】A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、C【解题分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【题目详解】由题意得,且,

解得:.

故选:C.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.5、A【解题分析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【题目点拨】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【题目详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【题目点拨】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.7、D【题目详解】当x=0时,y=0-1=-1,∴图象与y轴的交点坐标是(0,-1).故选D.8、C【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【题目详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【题目点拨】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.9、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【题目详解】A.a•a1=a2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【题目点拨】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.10、D【解题分析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如图,在⊙O取点D,使点D与点O在AB的同侧.则.∵∠C与∠D是圆内接四边形的对角,∴∠C=180°﹣∠D=112.5°.故选D.11、D【分析】根据题意原抛物线的顶点坐标为(0,0),根据平移规律得平移后抛物线顶点坐标为(1,-3),根据抛物线的顶点式求解析式.【题目详解】解:抛物线形平移不改变解析式的二次项系数,平移后顶点坐标为(1,-3),∴平移后抛物线解析式为.故选:D.【题目点拨】本题考查抛物线的平移与抛物线解析式的联系,关键是把抛物线的平移转化为顶点的平移,利用顶点式求解析式.12、B【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【题目详解】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【题目点拨】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.二、填空题(每题4分,共24分)13、【解题分析】本题应分别求出正方形的总面积和阴影部分的面积,用阴影部分的面积除以总面积即可得出概率.【题目详解】解:小虫落到阴影部分的概率=,故答案为:.【题目点拨】本题考查的是概率的公式,用到的知识点为:概率=相应的面积与总面积之比.14、【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=1EF,然后根据相似三角形的性质即可得到结论.【题目详解】∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=1EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()1=,故答案为:.【题目点拨】本题考查了三角形中位线的性质,三角形面积比等于相似比的平方,三角形中位线是对应边的一半,所以得到相似比是1:1.15、【分析】设AC=3x,AB=5x,可求BC=4x,由旋转的性质可得CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,由题意可证△CEB1∽△DEB,可得,即可表示出BD,DE,再得到A1D的长,故可求解.【题目详解】∵∠ACB=90°,sinB=,∴设AC=3x,AB=5x,∴BC==4x,∵将△ABC绕顶点C顺时针旋转,得到△A1B1C,∴CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,∵点E是A1B1的中点,∴CE=A1B1=2.5x=B1E=A1E,∴BE=BC−CE=1.5x,∵∠B=∠B1,∠CEB1=∠BED∴△CEB1∽△DEB∴∴BD=,DE=1.5x,∴A1D=A1E-DE=x,则x:=故答案为:.【题目点拨】本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB1∽△DEB是本题的关键.16、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【题目详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【题目点拨】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.17、1【分析】由题意直接利用位似图形的性质,进行分析计算即可得出答案.【题目详解】解:∵△ABC与△DEF是两个位似图形,它们的位似比为,∴△DEF的面积是△ABC的面积的4倍,∵S△ABC=10,∴S△DEF=1.故答案为:1.【题目点拨】本题主要考查位似变换,熟练掌握位似图形的面积比是位似比的平方比是解题的关键.18、【解题分析】试题分析:,解得r=.考点:弧长的计算.三、解答题(共78分)19、(1)见解析;(2)1【分析】(1)连接OB,由BD=CD,利用等边对等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC为直角三角形,得到两锐角互余,等量代换得到OB垂直于BD,即可得证;(2)设BD=x,则OD=x+1,在RT△OBD中,根据勾股定理得出32+x2=(x+1)2,通过解方程即可求得.【题目详解】解:(1)证明:连接OB,∵OA=OB,DC=DB,∴∠A=∠ABO,∠DCB=∠DBC,∵AO⊥OD,∴∠AOC=90°,即∠A+∠ACO=90°,∵∠ACO=∠DCB=∠DBC,∴∠ABO+∠DBC=90°,即OB⊥BD,则BD为圆O的切线;(2)解:设BD=x,则OD=x+1,而OB=OA=3,在RT△OBD中,OB2+BD2=OD2,即32+x2=(x+1)2,解得x=1,∴线段BD的长是1.20、(1);(1)图见解析,顶点坐标是;(3)或.【分析】(1)利用待定系数法求解即可;(1)先化为,即可得出顶点坐标,并作出图像;(3)根据图象即可得出,或时,y≥1.【题目详解】(1)函数的图象经过点,∴9+3-1=1,解得,∴函数的解析式为;(1)如图,顶点坐标是;(3)当时,解得:根据图象知,当或时,,∴使的的取值范围是或.【题目点拨】考查待定系数法求二次函数的解析式以及函数图象的性质,要根据图象所在的位置关系求相关的变量的取值范围.21、(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等得出△A1A2P∽△A1OA2,再根据相似三角形的性质即可得出答案;(2)设A1A2=x,得出OP=PA2=A1A2=x,A1P=1-x,再代入中即可求出答案.【题目详解】证明:(1)∵A1A2A3…A10是半径为1的⊙O的内接正十边形,A2P平分∠OA2A1∴∠A1OA2=36°,∠A1=∠OA2A1=72°,∠A1A2P=∠O=36°∴∠A1PA2=72°,OP=PA2,∴△A1A2P∽△A1OA2,∴A1A22=A1P•OA1(2)设A1A2=x,则OP=PA2=A1A2=x,∴A1P=1-x,由(1)得A1A22=A1P•OA1∴,∴,解得,(负值舍去)∴,即【题目点拨】本题考查了正十边形的性质及相似三角形的判定及性质定理,能够根据正十边形的性质得出角的度数是解题的关键.22、(1)(4,8);x=6;(2)①;②(6,4);(3)或【分析】(1)根据矩形的性质即可求出点A的坐标,然后根据抛物线的对称性,即可求出抛物线的对称轴;(2)①将A、C两点的坐标代入解析式中,即可求出抛物线的表达式;②先利用待定系数法求出直线AC的解析式,然后设点E的坐标为,根据坐标特征求出点G的坐标,即可求出EG的长,利用二次函数求最值即可;(3)画出图象可知:当x=4时,若抛物线上的对应点位于点B的下方或当x=8时,抛物线上的对应点位于D点上方时,抛物线与矩形没有公共点,将x=4和x=8分别代入解析式中,列出不等式,即可求出b的取值范围.【题目详解】解:(1)∵矩形的三个顶点、、∴点A的横坐标与点B的横坐标相同,点A的纵坐标与点D的纵坐标相同∴点A的坐标为:(4,8)∵点A与点D的纵坐标相同,且A、D都在抛物线上∴点A和点D关于抛物线的对称轴对称∴抛物线的对称轴为:直线.故答案为:(4,8);x=6;(2)①将A、C两点的坐标代入,得解得:故抛物线的表达式为;②设直线AC的解析式为y=kx+c将A、C两点的坐标代入,得解得:∴直线AC的解析式为设点E的坐标为,∵EG⊥AD,AD∥x轴∴点E和点G的横坐标相等∵点G在抛物线上∴点G的坐标为∴EG===∵∴当时,EG有最大值,且最大值为2,将代入E点坐标,可得,点E坐标为(6,4).(3)当时,抛物线的解析式为如下图所示,当x=4时,若抛物线上的对应点位于点B的下方或当x=8时,抛物线上的对应点位于D点上方时,抛物线与矩形没有公共点,故或解得:或.【题目点拨】此题考查的是二次函数与图形的综合大题,掌握矩形的性质、利用待定系数法求出二次函数和一次函数的解析式、利用二次函数求最值问题和数形结合的数学思想是解决此题的关键.23、(1)众数是7;(2)①相同;见详解;②【分析】(1)由概率公式求出7元本的个数,由众数的定义即可得出答案;

(2)①由中位数的定义即可得出答案;

②用列表法得出所有结果,嘉嘉两次都拿到7元本的结果有6个,由概率公式即可得出答案.【题目详解】解:(1)∵(一次拿到7元本),

∴7元本的个数为6×=4(个),按照从小到大的顺序排列为4,5,7,7,7,7,

∴这6个本价格的众数是7.(2)①相同;∵原来4、5、7、7、7、7,∴中位数为,5本价格为4、5、7、7、7,中位数为7,∴,∴相同.②见图第一个第二个4577745777∴(两次都为7).【题目点拨】本题考查了众数、中位数以及列表法求概率;熟练掌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论