版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市景成实验中学2024届数学九上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知关于x的一元二次方程有两个实数根,则k的取值范围是()A. B.且C.且 D.2.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.3.如图,在四边形ABCD中,,,,AC与BD交于点E,,则的值是()A. B. C. D.4.如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是()A.B.C.,,三点在同一直线上D.5.如图,周长为28的菱形中,对角线、交于点,为边中点,的长等于()A.3.5 B.4 C.7 D.146.如图,菱形中,,,且,连接交对角线于.则的度数是()A.100° B.105° C.120° D.135°7.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁8.用配方法解方程x2-4x+3=0时,原方程应变形为()A.(x+1)2=1 B.(x-1)2=1 C.(x+2)2=1 D.(x-2)2=19.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.10.在下列图案中,是中心对称图形的是()A. B. C. D.11.二次函数y=3(x–2)2–5与y轴交点坐标为()A.(0,2) B.(0,–5) C.(0,7) D.(0,3)12.平面直角坐标系内,已知线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,则端点的坐标为()A.(4,4) B.(4,4)或(-4,-4) C.(6,2) D.(6,2)或(-6,-2)二、填空题(每题4分,共24分)13.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_____cm的地方.14.点是二次函数图像上一点,则的值为__________15.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.16.若关于x的一元二次方程x2﹣4x+m=0没有实数根,则m的取值范围是_____.17.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:AB=4:9,则S△ADE:S△ABC=.18.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.三、解答题(共78分)19.(8分)已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.20.(8分)已知:如图,将△ADE绕点A顺时针旋转得到△ABC,点E对应点C恰在D的延长线上,若BC∥AE.求证:△ABD为等边三角形.21.(8分)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用表示);第二环节:成语听写、诗词对句、经典通读(分别用表示)(1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率.22.(10分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.23.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.24.(10分)小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①若木杆的长为,则其影子的长为;②在同一时刻同一地点,将另一根木杆直立于地面,请画出表示此时木杆在地面上影子的线段;(2)如图2,夜晚在路灯下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①请在图中画出表示路灯灯泡位置的点;②若木杆的长为,经测量木杆距离地面,其影子的长为,则路灯距离地面的高度为.25.(12分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积;26.已知直线与是的直径,于点.(1)如图①,当直线与相切于点时,若,求的大小;(2)如图②,当直线与相交于点时,若,求的大小.
参考答案一、选择题(每题4分,共48分)1、C【分析】若一元二次方程有两个实数根,则根的判别式△=b24ac≥1,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为1.【题目详解】解:∵一元二次方程有两个实数根,∴,解得:,∵,∴k的取值范围是且;故选:C.【题目点拨】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.2、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【题目详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,
∴△AEG∽△ACB.
∴.
∵∠EAF=∠CAD,∠AEF=∠C,
∴△AEF∽△ACD.
∴又,∴.∴故选C.【题目点拨】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.3、C【分析】证明,得出,证出,得出,因此,在中,由三角函数定义即可得出答案.【题目详解】∵,,∴,,∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,在中,;故选:C.【题目点拨】本题考查了平行线的性质、相似三角形的判定与性质以及解直角三角形的应用等知识;熟练掌握解直角三角形,证明三角形相似是解题的关键.4、B【分析】直接利用位似图形的性质进而得出答案.【题目详解】∵以点O为位似中心,把△ABC放大为原图形的2倍得到△ABC,
∴△ABC∽△A′B′C′,A,O,A′三点在同一直线上,AC∥A′C′,
无法得到CO:CA′=1:2,
故选:B.【题目点拨】此题考查了位似变换,正确掌握位似图形的性质是解题关键.5、A【解题分析】根据菱形的周长求出其边长,再根据菱形的性质得出对角线互相垂直,最后根据直角三角形斜边上的中线等于斜边的一半解答即可.【题目详解】∵四边形是菱形,周长为28∴AB=7,AC⊥BD∴OH=故选:A【题目点拨】本题考查的是菱形的性质及直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是关键.6、B【分析】由菱形及菱形一个内角为60°,易得△ABC与△ACD为等边三角形.由三线合一的性质求得∠ACE的度数.证得△BCE是等腰直角三角形,可求出∠CBE度数,用三角形外角的性质即可求得∠AFB.【题目详解】∵菱形ABCD中,∠ABC=60°,∴AB=BC=CD=AD,∠ADC=∠ABC=60°,∴△ABC、△ACD是等边三角形,∵CE⊥AD,
∴∠ACE=∠ACD=30°,
∴∠BCE=∠ACB+∠ACE=90°
∵CE=BC,∴△BCE是等腰直角三角形,
∴∠E=∠CBE=45°
∴∠AFB=∠CBE+∠ACB=45°+60°=105°,
故选:B.【题目点拨】本题考查了菱形的性质,等腰三角形的性质,三角形外角的性质.证得△BCE是等腰直角三角形是解题的关键.7、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【题目详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,
故选:A.
【题目点拨】本题考查了相似三角形的判定定理:
(1)两角对应相等的两个三角形相似.
(2)两边对应成比例且夹角相等的两个三角形相似.
(3)三边对应成比例的两个三角形相似.8、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【题目详解】移项,得
x2-4x=-3,配方,得
x2-2x+4=-3+4,即(x-2)2=1
,故选:D.【题目点拨】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.9、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【题目详解】解:四边形是平行四边形,,,,且,,故选:.【题目点拨】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.10、C【分析】根据中心对称图形的定义进行分析即可.【题目详解】A、不是中心对称图形.故A选项错误;B、不是中心对称图形.故B选项错误;C、是中心对称图形.故C选项正确;D、不是中心对称图形.故D选项错误.故选C.【题目点拨】考点:中心对称图形.11、C【分析】由题意使x=0,求出相应的y的值即可求解.【题目详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【题目点拨】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.12、B【分析】根据位似图形的性质只要点的横、纵坐标分别乘以2或﹣2即得答案.【题目详解】解:∵原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,且A(2,2)、B(3,1),∴点的坐标为(4,4)或(﹣4,﹣4).故选:B.【题目点拨】本题考查了位似图形的性质,属于基础题型,正确分类、掌握求解的方法是解题关键.二、填空题(每题4分,共24分)13、8【解题分析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:AB∥A′B′,∴△ABO∽△A′B′O,∴,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.14、1【分析】把点代入即可求得值,将变形,代入即可.【题目详解】解:∵点是二次函数图像上,
∴则.∴
故答案为:1.【题目点拨】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.15、2.【分析】在中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在中,再求出AB即可.【题目详解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案为:2.【题目点拨】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.16、m>4【分析】根据根的判别式即可求出答案.【题目详解】解:由题意可知:△<0,∴,∴m>4故答案为:m>4【题目点拨】本题考查根的判别式,解题的关键是熟练运用根的判别式.17、16:1【分析】由DE∥BC,证出△ADE∽△ABC,根据相似三角形的性质即可得到结论.【题目详解】∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案为16:1.18、1【解题分析】作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y=上,
∴a=1×1=1.故答案是:1.三、解答题(共78分)19、(1)120°;(2);(3)≤OE≤【分析】(1)利用圆内接四边形对角互补构建方程解决问题即可.(2)将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;(3)由题知AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,判断出四边形OMEN是矩形,进而得出OE2=2﹣(AC2+BD2),设AC=m,构建二次函数,利用二次函数的性质解决问题即可.【题目详解】解:(1)如图1中,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴设∠A=x,∠C=2x,则x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如图2中,∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵点C为弧BD的中点,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,将△ACD绕点C逆时针旋转120°得△CBE,如图2所示:则∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)设AC=m,则BD=3﹣m,∵⊙O的半径为1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【题目点拨】本题主要考查的是圆和四边形的综合应用,掌握圆和四边形的基本性质结合题目条件分析题目隐藏条件是解题的关键.20、证明见解析.【分析】由旋转的性质可得,,可得,由平行线的性质可得,可得,则可求,可得结论.【题目详解】解:由旋转知:△ADE≌△ABC,∴∠ACB=∠E,AC=AE,∴∠E=∠ACE,又BC∥AE,∴∠BCE+∠E=180°,即∠ACB+∠ACE+∠E=180°,∴∠E=60°,又AC=AE,∴△ACE为等边三角形,∴∠CAE=60°又∠BAC=∠DAE∴∠BAD=∠CAE=60°又AB=AD∴△ABD为等边三角形.【题目点拨】本题考查了旋转的性质,等边三角形的性质,平行线的性质等知识,求出是本题的关键.21、(1)见解析(2)【分析】(1)利用列表法展示所有12种等可能的结果数;(2)找出小明参加总决赛抽取题目是成语题目的结果数,然后根据概率公式计算即可.【题目详解】(1)使用列表的方法表示小明参加总决赛抽取题目的所有可能结果二一(2)小明参加总决赛抽取题目都是成语题目的概率为【题目点拨】此题考查概率公式与列表法,解题关键在于利用列表法列出所有结果22、(1)详见解析;(2)AC=.【分析】(1)由,推出四边形BCDE是平行四边形,再证明即可解决问题;(2)在中只要证明即可解决问题.【题目详解】(1),E为AD的中点,即四边形BCDE是平行四边形四边形BCDE是菱形;(2)如图,连接AC,AC平分在中,.【题目点拨】本题考查了平行四边形的判定定理与性质、菱形的判定定理、角平分线的定义、正弦三角函数值、直角三角形的性质,熟记各定理与性质是解题关键.23、(1)∠DAF=36°;(2)证明见解析;(3)证明见解析.【解题分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【题目详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【题目点拨】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.24、(1)①;②见解析;(2)①见解析;②【分析】(1)①根据题意证得四边形为平行四边形,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子信息基础课程设计
- 2024建筑装饰施工合同样本新(合同版本)
- 电器学研究课题研究报告
- 电商运营教学课程设计
- 电商美工培训课程设计
- 电压调节器课程设计
- 电动线锯机的课程设计
- 电动汽车响应研究报告
- 电动机保养课程设计
- 电动卷扬机的课程设计
- 矿山安全生产培训
- 2024年执业药师继续教育专业答案
- 中国高血压防治指南(2024年修订版)要点解读
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 自然资源调查监测劳动和技能竞赛
- 建筑公司安全生产专项整治三年行动实施方案
- 承包酒店鲜榨果汁合同范本
- 2024-2030年中国无菌注射剂行业市场发展趋势与前景展望战略分析报告
- 2024-2025学年人教版七年级数学上册期末达标测试卷(含答案)
- 第七章-应聘应试技巧
- 退休员工返聘审批表
评论
0/150
提交评论