2024届江苏省扬州市枣林湾学校数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
2024届江苏省扬州市枣林湾学校数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
2024届江苏省扬州市枣林湾学校数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
2024届江苏省扬州市枣林湾学校数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
2024届江苏省扬州市枣林湾学校数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省扬州市枣林湾学校数学九年级第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°2.从,,,这四个数字中任取两个,其乘积为偶数的概率是()A. B. C. D.3.如图,在□ABCD中,∠B=60°,AB=4,对角线AC⊥AB,则□ABCD的面积为A.6 B.12 C.12 D.164.如图,在中,,,为边上的一点,且.若的面积为,则的面积为()A. B. C. D.5.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定6.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55° B.70° C.110° D.125°7.下列方程是一元二次方程的是()A.2x﹣3y+1 B.3x+y=z C.x2﹣5x=1 D.x2﹣+2=08.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”9.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.10.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为_______________________12.若分别是方程的两实根,则的值是__________.13.如图,已知菱形的面积为,的长为,则的长为__________.14.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.15.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为_____.17.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.18.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.三、解答题(共66分)19.(10分)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.1.cot65°=0.446)20.(6分)如图,在四边形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点.(1)求点的坐标和反比例函数的解析式;(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?21.(6分)先化简,再求值:,其中,.22.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?23.(8分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.24.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.(1)求证:AB与⊙O相切;(2)若AB=4,求线段GF的长.25.(10分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.26.(10分)先化简,再求值:÷(1+x+),其中x=tan60°﹣tan45°.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【题目详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.2、C【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【题目详解】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是,故选:C.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3、D【分析】利用三角函数的定义求出AC,再求出△ABC的面积,故可得到□ABCD的面积.【题目详解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面积=2S△ABC=16故选D.【题目点拨】此题主要考查三角函数的应用,解题的关键是熟知正切的定义及平行四边形的性质.4、C【分析】根据相似三角形的判定定理得到,再由相似三角形的性质得到答案.【题目详解】∵,,∴,∴,即,解得,的面积为,∴的面积为:,故选C.【题目点拨】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.5、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【题目详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【题目点拨】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.6、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内角和定理即可求解.【题目详解】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【题目点拨】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.7、C【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.逐一判断即可.【题目详解】解:A、它不是方程,故此选项不符合题意;B、该方程是三元一次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、该方程不是整式方程,故此选项不符合题意;故选:C.【题目点拨】此题主要考查了一元二次方程定义,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.8、B【分析】根据事件发生的可能性大小判断相应事件的类型.【题目详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.【题目点拨】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【题目详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.10、A【解题分析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.考点:(1)中心对称图形;(2)轴对称图形二、填空题(每小题3分,共24分)11、3【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【题目详解】根据题意可得:A点的坐标为(1,0),B点的坐标为(3,0),C点的坐标为(0,3),则AB=2,所以三角形的面积=2×3÷2=3.考点:二次函数与x轴、y轴的交点.12、3【分析】根据一元二次方程根与系数的关系即可得答案.【题目详解】∵分别是方程的两实根,∴=3,故答案为:3【题目点拨】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.13、3【分析】根据菱形面积公式求得.【题目详解】解:【题目点拨】本题主要考查了菱形的对角线互相垂直,菱形的面积公式.14、5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分

N在矩形ABCD内部与

N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【题目详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4.设AM=MN=x,∵MD=5﹣x,MC=4+x,∴在Rt△MDC中,CD5+MD5=MC5,35+(5﹣x)5=(4+x)5,解得x=3;当∠BNC=90°,N在矩形ABCD外部时,如图5.∵∠BNC=∠MNB=90°,∴M、C、N三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4,设AM=MN=y,∵MD=y﹣5,MC=y﹣4,∴在Rt△MDC中,CD5+MD5=MC5,35+(y﹣5)5=(y﹣4)5,解得y=9,则所有符合条件的M点所对应的AM和为3+9=5.故答案为5.【题目点拨】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.15、【题目详解】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以所围成的圆锥的高=考点:圆锥的计算.16、π【分析】根据图示知,所以根据弧长公式求得的长.【题目详解】根据图示知,,∴的长为:.故答案为:.【题目点拨】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17、【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【题目详解】∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,

∴随机抽取一张点数为6的扑克,其概率是

故答案为【题目点拨】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、10【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【题目详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【题目点拨】此题考查了切线的性质及垂径定理,建立数学模型是关键.三、解答题(共66分)19、(1)8.5cm;(2)显示屏的顶部B′比原来升高了10.3cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转25度.【解题分析】(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D.∵∠AOB=115°,∴∠BOD=65°.∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.20、(1);(1)点恰好落在双曲线上【分析】(1)过C作CE⊥AB,由题意得到四边形ABCD为等腰梯形,进而得到三角形AOD与三角形BEC全等,得到CE=OD=3,OA=BE=1,可求出OE的长,确定出C坐标,代入反比例解析式求出k的值即可;(1)由平移规律确定出B′的坐标,代入反比例解析式检验即可.【题目详解】解:(1)过C作CE⊥AB.∵DC∥AB,AD=BC,∴四边形ABCD为等腰梯形,∴∠A=∠B,DO=CE=3,CD=OE,∴△ADO≌△BCE,∴BE=OA=1.∵B(6,0)∴OB=6∴OE=OB﹣BE=6﹣1=4,∴C(4,3),把C(4,3)代入反比例函数解析式得:k=11,则反比例解析式为y;(1)由平移得:平移后B的坐标为(6,1),把x=6代入反比例得:y=1,则平移后点落在该双曲线上.【题目点拨】本题考查了待定系数法求反比例解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解答本题的关键.21、,【分析】原式括号中变形后,利用同分母分式的减法法则计算,再利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【题目详解】原式.当,时,原式=3×()×().【题目点拨】此题考查了分式的化简求值,以及分母有理化,熟练掌握运算法则是解本题的关键.22、(1);(2)每件商品的销售价应定为元或元;(3)售价定为元/件时,每天最大利润元.【分析】(1)待定系数法求解可得;

(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;

(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.【题目详解】(1)设与之间的函数关系式为,

由所给函数图象可知:

解得:.

故与的函数关系式为;(2)根据题意,得:,

整理,得:,

解得:或,

答:每件商品的销售价应定为元或元;(3)∵,

∴当时,,

∴售价定为元/件时,每天最大利润元.【题目点拨】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式,理解题意确定相等关系,并据此列出函数解析式.23、证明见解析【解题分析】试题分析:由AD是中线以及CD2=BE·BA可得,从而可得△BED∽△BDA,根据相似三角形的性质问题得证.试题解析:∵AD是中线,∴BD=CD,又CD2=BE·BA,∴BD2=BE·BA,即,又∠B=∠B,∴△BED∽△BDA,∴,∴ED·AB=AD·BD.【题目点拨】本题考查了相似三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论