




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市绥阳县私立育才中学高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽取一个容量为n的样本,样本中A种型号产品有16件,那么此样本容量n=(
)
A.800
B.40
C.128
D.80参考答案:D2.已知三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,且PA=2,PB=,PC=3,则这个三棱锥的外接球的表面积为()A.16π B.32π C.36π D.64π参考答案:A【考点】球的体积和表面积.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长:=4所以球的直径是4,半径为2,球的表面积:4π×4=16π.故选A.3.11.函数,若存在,对于任意,都有,则的最小值为A.
B.
C.
D.
参考答案:C略4.过点(1,0)且与直线x-2y-2=0平行的直线方程是(
).A、2x+y-2=0 B、x-2y+1=0 C、x-2y-1=0 D、x+2y-1=0参考答案:C5.2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B(
)A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件参考答案:A【分析】事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【点睛】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.6.若直线经过A(﹣2,9)、B(6,﹣15)两点,则直线AB的倾斜角是()A.45°B.60°C.120°D.135°参考答案:C略7.若角A,B,C是△ABC的三个内角,则下列等式一定成立的是(
)A.
B.C.
D.参考答案:D8.函数且的图像一定过定点(
)A.(2,1)
B.(2,2)
C.
(0,2)
D.(2,-3)参考答案:B9.若关于的不等式的解集为(-2,+∞),则关于的不等式的解集为A.(-∞,-3)∪(-1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-3,1)
D.(-1,3)参考答案:D10.已知全集U={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么CU(A∩B)=(
)A.{3,4}
B.{1,2,5,6}
C.{1,2,3,4,5,6}
D.Φ参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设f(x)是定义在R上的偶函数,且f(x+3)=1-f(x),又当x∈(0,1]时,f(x)=2x,则f(17.5)=.
参考答案:1解析:从认知f(x)的性质切入已知f(x+3)=1-f(x)①以-x代替①中的x得f(-x+3)=1-f(-x)②
又f(x)为偶函数∴f(-x)=f(x)③∴由②③得f(-x+3)=1-f(x)④
∴由①④得f(3+x)=f(3-x)f(x)图象关于直线x=3对称f(-x)=f(6+x)∴由③得f(x)=f(6+x)
即f(x)是周期函数,且6是f(x)的一个周期.⑤于是由③⑤及另一已知条件得
f(17.5)=f(17.5-3×6)=f(-0.5)=f(0.5)=2×0.5=112.已知函数在上为减函数,则的取值范围是__▲___参考答案:13.(5分)已知函数f(x)=﹣x2+ax﹣b.若a、b都是从区间[0,4]内任取的一个数,则f(1)>0成立的概率是
.参考答案:考点: 几何概型.专题: 数形结合.分析: 本题利用几何概型求解即可.在a﹣o﹣b坐标系中,画出f(1)>0对应的区域,和a、b都是在区间[0,4]内表示的区域,计算它们的比值即得.解答: f(1)=﹣1+a﹣b>0,即a﹣b>1,如图,A(1,0),B(4,0),C(4,3),S△ABC=,P===.故答案为:.点评: 本题主要考查几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.古典概型与几何概型的主要区别在于:几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个.14.,则的最小值是
.参考答案:25略15.求值:sin960°=__________参考答案:16.若,则
.参考答案:17.已知函数对于任意的实数,均有,并且,则_________,___________参考答案:0,略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量,(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).参考答案:(1)当时,=;当时19.已知二次函数f(x)满足f(0)=2,f(x)-f(x-1)=2x+1,求函数f(x2+1)的最小值.参考答案:因为二次函数,故可设.
1分又.
即
7分
令,则.函数.又在上单调递增.
即的最小值为5.
12分20.(12分)已知向量=(,﹣1),=(,),若存在非零实数k,t使得=+(t2﹣3),=﹣k+t,且⊥,试求:的最小值.参考答案:考点: 平面向量的综合题.专题: 计算题;综合题;平面向量及应用.分析: 根据向量数量积的坐标公式和性质,分别求出||=2,||=1且?=0,由此将?=0化简整理得到k=(t3﹣3t).将此代入,可得关于t的二次函数,根据二次函数的单调性即可得到的最小值.解答: ∵=(,﹣1),=(,),∴||==2,||==1,且?=×+(﹣1)×=0∵=+(t2﹣3),=﹣k+t,且⊥,∴?=0,即(+(t2﹣3))(﹣k+t)=0展开并化简,得﹣k2+(﹣kt2+3k+t)?+t(t2﹣3)2=0将||=2、||=1和?=0代入上式,可得﹣4k+t(t2﹣3)=0,整理得k=(t3﹣3t)∴==t2+t﹣=(t+2)2﹣由此可得,当t=﹣2时,的最小值等于﹣.点评: 本题以向量的数量积运算为载体,求的最小值.着重考查了平面向量数量积的坐标公式、运算性质,以及二次函数的图象与性质等知识,属于中档题.21.已知向量,向量.(1)求向量的坐标;(2)当k为何值时,向量与向量共线.参考答案:(1)(2)试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年茶叶叶面肥项目投资价值分析报告
- 2025至2030年聚合软木塞项目投资价值分析报告
- 梗阻性黄疸介入治疗及护理
- 2025至2030年电容运转电机项目投资价值分析报告
- 2025至2030年环卫专用车行业深度研究报告
- 销售售后服务课件
- 2025至2030年中国预调酒市场发展预测及投资策略分析报告
- 2025至2030年刹车片分离器项目投资价值分析报告
- 2025至2030年内齿轮泵项目投资价值分析报告
- 2025至2030年中国纳米银线透明导电薄膜行业市场运营格局及未来前景分析报告
- 2024年地理中考模拟考试地理(江苏泰州卷)(A4考试版)
- 乳腺癌诊治指南与规范(2025年版)解读
- 2024年上海嘉定区区属国有企业招聘真题
- 基于核心素养的初中历史跨学科教学策略研究
- 有理数的加法说课课件2024-2025学年人教版数学七年级上册
- GB/T 18655-2025车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法
- 2025年江苏南通苏北七市高三二模语文作文分析
- 吉林省吉林市2024-2025学年高三下学期3月三模试题 生物 含答案
- 辽宁省协作校2024-2025学年度下学期高三第一次模拟考试语文+答案
- 2025年03月中央社会工作部所属事业单位公开招聘11人笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年中高端女装市场趋势与前景深度分析
评论
0/150
提交评论