福建省福州市金桥学校高一数学文模拟试题含解析_第1页
福建省福州市金桥学校高一数学文模拟试题含解析_第2页
福建省福州市金桥学校高一数学文模拟试题含解析_第3页
福建省福州市金桥学校高一数学文模拟试题含解析_第4页
福建省福州市金桥学校高一数学文模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市金桥学校高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义域为R的函数的值域为,则函数的值域为(

)A、 B、 C、 D、参考答案:C2.设,若,则(

)A.-2

B.-5

C.

-7

D.4参考答案:C令为奇函数又故选C.

3.过点(1,2),且与原点距离最大的直线方程是(

)A.

B.

C.

D.参考答案:A解析:

由分析可知当直线过点且与垂直时原点到直线的距离最大.因为,所以,所以所求直线方程为,即.4.已知向量,,则等于(

)A.

B.

C.

D.参考答案:B5.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图(如右图),则总成绩在[400,500)内共有(

)A.5000人

B.4500人C.3250人

D.2500人参考答案:B6.袋子中有大小、形状完全相同的四个小球,分别写有和、“谐”、“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止摸球的概率为(

)A. B. C. D.参考答案:C【分析】由题随机数的前两位1,2只能出现一个,第三位出现另外一个.依次判断每个随机数即可.【详解】由题随机数的前两位1,2只能出现一个,第三位出现另外一个,∴满足条件的随机数为142,112,241,142,故恰好第三次就停止摸球的概率为.故选:C【点睛】本题考查古典概型,熟记古典概型运算公式是关键,是中档题,也是易错题.7.已知幂函数y=f(x)的图象经过点(2,),则f(4)的值为(

)A.16 B.2 C. D.参考答案:C【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】求出幂函数的解析式,然后求解函数值即可.【解答】解:设幂函数为y=xα,∵幂函数y=f(x)的图象经过点(2,),∴=2α,解得α=.y=x.f(4)==.故选:C.【点评】本题考查幂函数的解析式的求法,基本知识的考查.8.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离 B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积 D.△QEF的面积参考答案:B【考点】异面直线及其所成的角.【分析】A.由于平面QEF即为对角面A1B1CD,点P为A1D1的中点,可得:点P到平面QEF即到对角面A1B1CD的距离=为定值;D.由于点Q到直线CD的距离是定值a,|EF|为定值,因此△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.用排除法即可得出.【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.9.函数的零点所在的区间是(

)A、

B、

C、

D、参考答案:C略10.圆心为(1,1)且过原点的圆的方程是()A.B.C.D.参考答案:D试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.二、填空题:本大题共7小题,每小题4分,共28分11.已知偶函数在上为减函数,且,则不等式的解集为_____________。参考答案:略12.幂函数的图像经过点(2,4),则=

参考答案:9略13.直线被两平行线所截得的线段的长为,则的倾斜角可以是①;②;③;④;⑤.其中正确答案的序号是

.参考答案:①⑤14.若函数的图象关于点中心对称,则的最小值为

参考答案:略15.若函数的零点个数为2,则的范围是

.参考答案:16.已知a>0,b>0,,则2a+b的最小值为

.参考答案:817.给出下列命题:①存在实数,使得成立;②存在实数,使得成立;③是偶函数;④是函数的一条对称轴;⑤若是第一象限角,且,则.其中正确命题的序号有

.参考答案:③④三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数的图像的一部分如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数的最值;

参考答案:(Ⅰ)由图像知,,当时,有,,(Ⅱ)略19.已知椭圆5x2+9y2=45,椭圆的右焦点为F,(1)求过点F且斜率为1的直线被椭圆截得的弦长.(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦AB的中点P的轨迹方程.参考答案:【考点】椭圆的简单性质.【专题】综合题;数形结合;转化思想;圆锥曲线的定义、性质与方程.【分析】椭圆,右焦点为F(2,0).(1)过点F(2,0)且斜率为1的直线为y=x﹣2,设l与椭圆交于点A(x1,y1),B(x2,y2),直线方程与椭圆方程联立可得根与系数的关系,利用弦长公式:|AB|=即可得出.(2)设l与椭圆交于A(x1,y1),B(x2,y2),由已知得,,.把点A,B的坐标代入椭圆方程,两式相减可得k,再利用点斜式即可得出.(3)设点P(x,y),A(x1,y1),B(x2,y2),且,kAB=kFP,即,把点A,B的坐标代入椭圆方程,两式相减即可得出.【解答】解:椭圆,右焦点为F(2,0).(1)过点F(2,0)且斜率为1的直线为y=x﹣2,设l与椭圆交于点A(x1,y1),B(x2,y2),联立,消去y得14x2﹣36x﹣9=0,∴,,∴.(2)设l与椭圆交于A(x1,y1),B(x2,y2),由已知得,,.联立,两式相减得:5(x1+x2)(x1﹣x2)+9(y1+y2)(y1﹣y2)=0,∴,∴5+9k=0,即.∴l方程为y﹣1=(x﹣1)即5x+9y﹣14=0.(3)设点P(x,y),A(x1,y1),B(x2,y2),且,kAB=kFP,即,,两式相减得:5(x1+x2)(x1﹣x2)+9(y1+y2)(y1﹣y2)=0,,,整理得:5x2+9y2﹣10x=0,AB中点的轨迹方程为5x2+9y2﹣10x=0.【点评】本题考查了椭圆的标准方程及其性质、一元二次方程的根与系数的关系、弦长公式、中点坐标公式、“点差法”,考查了推理能力与计算能力,属于难题.20.计算下列各式的值:(写出化简过程)(1);(2).参考答案:【考点】对数的运算性质.【分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质即可得出.【解答】解:(1)原式=1+×﹣0.12×0.5=1+﹣=.(2)原式==.21.(本小题满分12分)

已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1}.(1)若a=3时,求;

(2)若MN,求实数a的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论