版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2016-2017学年北京市西城区高一(上)期末数学试卷A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对2.若向量=(1,﹣2),=(x,4)满足⊥,则实数x等于()A.8 B.﹣8 C.2 D.﹣23.若角α的终边经过点(﹣4,3),则tanα=()A. B. C. D.4.函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减5.函数f(x)=sinx﹣cosx的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称6.如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A. B. C.2 D.7.定义在R上,且最小正周期为π的函数是()A.y=sin|x| B.y=cos|x| C.y=|sinx| D.y=|cos2x|8.设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.199.函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A. B. C. D.10.如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f(x)的图象是()A. B. C. D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上。11.若向量=(﹣1,2)与向量=(x,4)平行,则实数x=.12.若θ为第四象限的角,且,则cosθ=;sin2θ=.13.将函数y=cos2x的图象向左平移个单位,所得图象对应的函数表达式为.14.若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.已知,则cos(x﹣y)=.16.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6k,k∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.三、解答题:本大题共3小题,共36分。解答应写出文字说明,证明过程或演算步骤。17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求函数f(x)的单调增区间;(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f(x).(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁UB)=.21.已知函数若f(a)=2,则实数a=.22.定义在R上的函数f(x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为.23.函数的值域为.(其中[x]表示不大于x的最大整数,例如[3。15]=3,[0。7]=0.)24.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是.二、解答题:本大题共3小题,共30分。解答应写出文字说明,证明过程或演算步骤.25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.26.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.27.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.
2016—2017学年北京市西城区高一(上)期末数学试卷参考答案与试题解析A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合要求的。1.如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对【考点】三角函数值的符号.【分析】根据象限角的符号特点即可判断.【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,故选:C.【点评】本题考查了象限角的符号无问题,属于基础题.2.若向量=(1,﹣2),=(x,4)满足⊥,则实数x等于()A.8 B.﹣8 C.2 D.﹣2【考点】平面向量数量积的运算.【分析】根据题意,分析可得•=0,由向量数量积的坐标的运算公式可得•=1×x+(﹣2)×4=0,解可得x的值,即可得答案.【解答】解:根据题意,若向量、满足⊥,必有•=0,又由=(1,﹣2),=(x,4),则有•=1×x+(﹣2)×4=0,解可得x=8;故选:A.【点评】本题考查向量数量积的坐标运算,若两个非零向量互相垂直,则其数量积为0.3.若角α的终边经过点(﹣4,3),则tanα=()A. B. C. D.【考点】任意角的三角函数的定义.【分析】由题设条件,根据三角函数终边上一点的定义即可求得正切值,正切值为纵坐标与横坐标的商.【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,故选:D.【点评】本题考查任意角三角函数的定义,求解的关键是熟练掌握定义中知道了终边上一点的坐标,求正切值的规律.知道了终边上一点的坐标的三角函数的定义用途较广泛,应好好掌握.4.函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减【考点】正弦函数的图象.【分析】函数=cosx,即可得出结论.【解答】解:函数=cosx,是偶函数,且在区间上单调递减,故选D.【点评】本题考查诱导公式,考查余弦函数的性质,比较基础.5.函数f(x)=sinx﹣cosx的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称【考点】三角函数的化简求值;正弦函数的图象.【分析】函数解析式提取,利用两角差的正弦函数公式化简,利用正弦函数图象的性质即可做出判断.【解答】解:函数y=sinx﹣cosx=sin(x﹣),∴x﹣=kπ+,k∈Z,得到x=kπ+,k∈Z,则函数的图象关于直线x=﹣对称.故选:B.【点评】本题考查了两角差的正弦函数公式,考查正弦函数图象的性质,熟练掌握公式是解本题的关键,是基础题.6.如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A. B. C.2 D.【考点】平面向量的基本定理及其意义.【分析】根据向量加减的几何意义可得,λ=,μ=,问题得以解决.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A【点评】本题考查了向量的加减的几何意义,属于基础题.7.定义在R上,且最小正周期为π的函数是()A.y=sin|x| B.y=cos|x| C.y=|sinx| D.y=|cos2x|【考点】三角函数的周期性及其求法.【分析】分别求出函数的最小正周期,判断即可.【解答】解:对于A:y=sin|x|的最小正周期为2π,对于B,y=cos|x|的最小正周期为2π,对于C,y=|sinx|最小正周期为π,对于D,y=|cos2x|最小正周期为,故选:C【点评】本题考查了三角形函数的最小正周期,属于基础题.8.设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.19【考点】平面向量数量积的运算.【分析】利用两个向量的数量积的定义求出,再利用|+|2=||2+||2+2,即可求出答案.【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||•||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.【点评】本题考查两个向量的数量积的定义,向量的模的定义,求向量的模的方法.9.函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用图象中求得函数的周期,求得ω,最后根据x=2时取最大值,求得φ,即可得解.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当x=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2kπ+,k∈Z,∴φ=2kπ+,k∈Z,∵0<φ<π,∴φ=,故选:B.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.10.如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f(x)的图象是()A. B. C. D.【考点】函数的图象与图象变化.【分析】写出函数S=f(x)的解析式.根据函数的单调性和极值判断出函数图象的大体形状即可.【解答】解:由题意得S=f(x)=x﹣f′(x)=≥0当x=0和x=2π时,f′(x)=0,取得极值.则函数S=f(x)在[0,2π]上为增函数,当x=0和x=2π时,取得极值.结合选项,A正确.故选A.【点评】本题考查了函数的解析式的求法以及函数的求导,根据函数的性质判断函数的图象,求出函数的解析式是解决此题的关键.二、填空题:本大题共6小题,每小题4分,共24分。把答案填在题中横线上。11.若向量=(﹣1,2)与向量=(x,4)平行,则实数x=﹣2.【考点】平行向量与共线向量.【分析】由于向量=(﹣1,2)与向量=(x,4)平行,可得,进而列出方程组求解出答案即可.【解答】解:因为向量=(﹣1,2)与向量=(x,4)平行,所以,所以﹣1=λx,2=λ4,解得:λ=,x=﹣2.故答案为﹣2.【点评】解决此类问题的关键是熟练掌握向量共线的坐标表示,并且结合正确的计算.12.若θ为第四象限的角,且,则cosθ=;sin2θ=﹣.【考点】同角三角函数基本关系的运用.【分析】由已知利用同角三角函数基本关系式可求cosθ,进而利用二倍角的正弦函数公式可求sin2θ的值.【解答】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(﹣)×=﹣.故答案为:,﹣.【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.13.将函数y=cos2x的图象向左平移个单位,所得图象对应的函数表达式为y=﹣sin2x.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:将函数y=cos2x的图象向左平移个单位,所得图象对应的解析式为y=cos2(x+)=cos(2x+)=﹣sin2x.故答案为:y=﹣sin2x.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,考查了转化思想,属于基础题.14.若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于150°.【考点】平面向量数量积的运算.【分析】根据向量数量积公式和向量的夹角公式计算即可.【解答】解:∵,均为单位向量,且与的夹角为120°,∴(﹣)•=﹣||2=1×1×(﹣)﹣1=﹣,|﹣|2=||2﹣2+||2=1﹣2×1×1×(﹣)+1=3,∴|﹣|=,设﹣与的夹角为θ,则cosθ===﹣,∵0°≤θ≤180°,∴θ=150°,故答案为:150°【点评】解决此类问题的关键是熟练掌握平面向量数量积的运算性质与公式,以及向量的求模公式的应用,此题属于基础题,主要细心的运算即可得到全分.15.已知,则cos(x﹣y)=﹣.【考点】两角和与差的余弦函数.【分析】对已知两式分别平方相加,逆用两角和与差的余弦函数公式即可求得答案.【解答】解:∵sinx+siny=,①cosx+cosy=,②①2+②2得:2+2sinxsiny+2cosxcosy=,∴cos(x﹣y)=sinxsiny+cosxcosy=﹣,故答案为:﹣.【点评】本题考查两角和与差的余弦函数,考查三角函数的平方关系的应用,属于基础题.16.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6k,k∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是①③.【考点】正弦函数的图象.【分析】函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,可得ω()=nπ,ω=n(n∈Z),即可得出结论.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,∴ω()=nπ,∴ω=n(n∈Z),∴①ω=3正确;②ω≠6k,k∈N*,不正确;③φ可能等于,正确;④符合条件的ω有无数个,且均为整数,不正确.故答案为①③.【点评】本题考查三角函数的图象与性质,考查学生分析解决问题的能力,属于中档题.三、解答题:本大题共3小题,共36分。解答应写出文字说明,证明过程或演算步骤.17.(12分)(2016秋•西城区期末)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.【考点】同角三角函数基本关系的运用.【分析】(Ⅰ)利用特殊角的三角函数值,两角和的正切函数公式可求tanφ的值,进而利用二倍角的正切函数公式即可计算得解.(Ⅱ)利用同角三角函数基本关系式化简所求即可得解.【解答】解:(Ⅰ)∵φ∈(0,π),且=,可得:tanφ=﹣2,∴tan2φ==.(Ⅱ)===﹣.【点评】本题主要考查了特殊角的三角函数值,两角和的正切函数公式,二倍角的正切函数公式,同角三角函数基本关系式的应用,考查了转化思想,属于基础题.18.(12分)(2016秋•西城区期末)已知函数.(1)求函数f(x)的单调增区间;(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.【考点】三角函数中的恒等变换应用.【分析】(1)运用两角差的余弦公式和二倍角公式,化简可得f(x),再由余弦函数的单调区间,解不等式可得所求增区间;(2)求得f(x)的最值,即可得到a的取值范围.【解答】解:(1)函数=cosx(cosx+sinx)=+sin2x=cos(2x﹣)+,由2kπ﹣π≤2x﹣≤2kπ,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,即f(x)的增区间为[kπ﹣,kπ+],k∈Z;(2)由(1)可得当2x﹣=2kπ,即x=kπ+,k∈Z时,f(x)取得最大值;当2x﹣=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值﹣.由直线y=a与函数f(x)的图象无公共点,可得a的范围是a>或a<﹣.【点评】本题考查三角函数的化简和求值,考查余弦函数的图象和性质,属于中档题.19.(12分)(2016秋•西城区期末)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f(x).(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.【考点】平面向量数量积的运算.【分析】(Ⅰ)画出图形,建立直角坐标系,即得y=f(x)的解析式,代值计算即可(Ⅱ)通过分类讨论,利用二次函数的单调性即可判断出.【解答】解:(1)如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=x,(0≤x≤1).∴=+x=(﹣2,0)+x(1,a)=(x﹣2,xa),∴=﹣=(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)∴y=f(x)=•=(2﹣x,﹣xa)•(2﹣x,a﹣xa)=(2﹣x)2﹣ax(a﹣xa)=(a2+1)x2﹣(4+a2)x+4.∴f(1)=a2+1﹣(4+a2)+4=1(Ⅱ)由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=.当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当a>时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上所述函数f(x)的最大值为4【点评】本题考查了数量积运算、分类讨论、二次函数的单调性等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁UB)={x|﹣1≤x<0}.【考点】交、并、补集的混合运算.【分析】化简集合B,根据补集与交集的定义求出结果即可.【解答】解:全集U=R,集合A={x|x<0},B={x||x|>1}={x|x<﹣1或x>1},则∁UB={x|﹣1≤x≤1},A∩(∁UB)={x|﹣1≤x<0}.故答案为:{x|﹣1≤x<0}.【点评】本题考查了集合的定义与运算问题,是基础题目.21.已知函数若f(a)=2,则实数a=e2.【考点】函数的值.【分析】当a<0时,f(a)=a﹣2=2;当a>0时,f(a)=lna=2.由此能求出实数a.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.22.定义在R上的函数f(x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为(﹣3,0)∪(3,+∞).【考点】奇偶性与单调性的综合.【分析】易判断f(x)在(﹣∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.【解答】解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上也是增函数,由f(﹣3)=0,得﹣f(3)=0,即f(3)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f(x)的草图,如图所示:∴f(x)>0的解集为:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).【点评】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.23.函数的值域为{0,1}.(其中[x]表示不大于x的最大整数,例如[3.15]=3,[0。7]=0.)【考点】函数的值域.【分析】由题设中的定义,可对x分区间讨论,设m表示整数,综合此四类即可得到函数的值域【解答】解:设m表示整数.①当x=2m时,[]=[m+0.5]=m,[]=[m]=m.∴此时恒有y=0.②当x=2m+1时,[]=[m+1]=m+1,[]=[m+0.5]=m.∴此时恒有y=1.③当2m<x<2m+1时,2m+1<x+1<2m+2∴m<<m+0。5m+0。5<<m+1∴[]=m,[]=m∴此时恒有y=0④当2m+1<x<2m+2时,2m+2<x+1<2m+3∴m+0.5<<m+1m+1<<m+1.5∴此时[]=m,[]=m+1∴此时恒有y=1.综上可知,y∈{0,1}.故答案为{0,1}.【点评】此题是新定义一个函数,根据所给的规则求函数的值域,求解的关键是理解所给的定义,一般从函数的解析式入手,要找出准确的切入点,理解[x]表示数x的整数部分,考察了分析理解,判断推理的能力及分类讨论的思想24.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20].【考点】基本不等式.【分析】设矩形的另一边长为ym,由相似三角形的性质可得:=,(0<x<30).矩形的面积S=x(30﹣x),利用S≥200解出即可.【解答】解:设矩形的另一边长为ym,由相似三角形的性质可得:=,解得y=30﹣x,(0<x<30)∴矩形的面积S=x(30﹣x),∵矩形花园的面积不小于200m2,∴x(30﹣x)≥200,化为(x﹣10)(x﹣20)≤0,解得10≤x≤20.满足0<x<30.故其边长x(单位m)的取值范围是[10,20].故答案为:[10,20].【点评】本题考查了相似三角形的性质、三角形的面积计算公式、一元二次不等式的解法等基础知识与基本技能方法,属于基础题.二、解答题:本大题共3小题,共30分。解答应写出文字说明,证明过程或演算步骤.25.(10分)(2016秋•西城区期末)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.【考点】对数函数的图象与性质;函数奇偶性的判断.【分析】(Ⅰ)若,则=2,解得a的值;(Ⅱ)函数f(x)为奇函数,结合函数奇偶性的定义和对数的运算性质,可得答案.【解答】解:(Ⅰ)∵函数.,∴=,∴=2,解得:a=3;(Ⅱ)函数f(x)为奇函数,理由如下:函数f(x)的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称,且f(﹣x)+f(x)=+=0,即f(﹣x)=﹣f(x),故函数f(x)为奇函数.【点评】本题考查的知识点是函数的奇偶性,对数函数的图象和性质,函数求值,难度中档.26.(10分)(2016秋•西城区期末)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.【考点】函数零点的判定定理;利用导数研究函数的单调性.【分析】(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)⇒|x+a|=|4﹣x+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f(x)]=|3x+a|﹣3的零点个数,就是函数G(x)=|3x+a|与y=3的交点,分①当0≤a<3时;②当a≥3时;③﹣3≤a<0时;④当a<﹣3时,画出图象判断个数.【解答】解:(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)⇒|x+a|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省泰安市肥城市2024-2025学年(五四学制)八年级上学期末考试道德与法治试题(含答案)
- 10万吨电池余料回收循环利用项目可行性研究报告模板-立项备案
- 人教版历史与社会八下8.2《洋务运动与近代民族工业的发展》说课稿
- 河南省漯河市第三高级中学2025届高三上学期12月阶段性测试语文试卷(含答案)
- 海南省三亚市(2024年-2025年小学六年级语文)部编版课后作业(上学期)试卷及答案
- 陕西省咸阳市(2024年-2025年小学六年级语文)统编版阶段练习(上学期)试卷及答案
- 贵州盛华职业学院《化学分析实验》2023-2024学年第一学期期末试卷
- 贵州黔南经济学院《自动化学科前沿》2023-2024学年第一学期期末试卷
- 新疆塔城地区(2024年-2025年小学六年级语文)部编版开学考试(下学期)试卷及答案
- Unit 8 Section A 3a-3c 英文版说课稿 2024-2025学年人教版八年级英语下册
- GB/T 40537-2021航天产品裕度设计指南
- 政协个人简历模板12篇
- 木工工具及使用方法课件
- 节能减排奖惩制度(5篇)
- 部编六年级语文上册 读音易错字
- 全国医学博士英语统一考试词汇表(10000词全) - 打印版
- COPD(慢性阻塞性肺病)诊治指南(2023年中文版)
- 气相色谱仪作业指导书
- 中医院医院等级复评实施方案
- 跨高速桥梁施工保通专项方案
- 铁路货车主要轮对型式和基本尺寸
评论
0/150
提交评论