




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目录contentsChapter1BasisofMatrixCalculatioChapter2TheSolutionofLeastSquaresProblemsChapter3PrincipalComponentAnalysiChapter4PartialLeastSquaresAnalysisChapter5RegularizatioChapter6TransferMethodChapter1
Basis
of
Matrix
Calculation1.1Fundamental
Concepts1.2The
Most
Basic
Matrix
Decompositio1.3Singular
Value
Decomposition(SVD)1.4The
Quadratic
Form
1.1FundamentalConceptsThe
purpose
of
this
chapter
is
to
review
important
fundamental
concepts
in
linear
algebra,
as
a
foundation
for
the
rest
of
the
course.We
first
discuss
the
fundamentalbuildingblocks,suchasanoverviewofmatrixmultiplicationfroma“bigblock”
perspective,
linear
independence,
subspaces
and
related
ideas,rank,etc.,upon
which
the
rigor
of
linear
algebra
rests.
We
then
discuss
vector
norms,and
various
interpretations
ofthematrixmultiplicationoperation
1.1.1Notation
Throughout
this
course,
we
shall
indicate
that
a
matrix
A
is
of
dimensionm×n,and
whose
elements
are
taken
from
the
set
of
real
numbers,by
then
otation
A∈Cm×n.Thismeans
that
the
matrix
A
belongs
to
the
Cartesian
product
of
the
real
numbers,
taken
m×n
times,
one
for
each
element
of
A.
In
a
similar
way,
the
notation
A∈Cm×nmeans
thematrix
is
of
dimensionm×n,
and
the
elements
are
taken
fromthe
set
of
complexnumbers.
By
the
matrix
dimension
m×n,
we
mean
A
consists
of
m
rows
and
ncolumns.
Similarly,thenotationa∈Rm(Cm)impliesavectorofdimensionmwhoseelementsaretakenfromthesetofreal(complex)numbers.By“dimensionofavector”,wemeanitslength,i.e.,thatitconsistsofmelements.
Also,weshallindicatethatascalaraisfromthesetofreal(complex)numbersbythenotationa∈R(C).Thus,anuppercaseboldcharacterdenotesamatrix,alowercaseboldcharacterdenotesavector,andalowercasenon-boldcharacterdenotesascalar.
Byconvention,avectorbydefaultistakentobeacolumnvector.Further,foramatrixA,wedenoteitsi-thcolumnasai.Wealsoimplythatitsj-throwisajT,eventhoughthisnotationmaybeambiguous,sinceitmayalsobetakentomeanthetransposeofthej-thcolumn.Thecontextofthediscussionwillhelptoresolvetheambiguity.
1.1.2“Bigger-Block”Interpretations
of
Matrix
Multiplication
Let
us
define
the
matrix
product
C
as
Inner-ProductRepresentation
Ifaandbarecolumnvectorsofthesamelength,thenthescalarquantityaTbreferredtoastheinnerproductofaandb.IfwedefineaiT∈Rkasthei-throwofAandbj∈Rkasthej-thcolumnofB,thentheelementcijofCisdefinedastheinnerproductaiTbj.Thisistheconventionalsmall-blockrepresentationofmatrixmultiplication.
ColumnRepresentation
Thisisthenextbigger-blockviewofmatrixmultiplication.Herewelookatformingtheproductonecolumnatatime.Thej-thcolumncjofCmaybeexpressedasalinearcombinationofcolumnsaiofAwithcoefficientswhicharetheelementsofthej-thcolumnofB.Thus,
Outer-ProductRepresentation
Thisisthelargest-blockrepresentation.Letusdefineacolumnvectora∈RmandarowvectorbT∈Rn.Thentheouterproductofaandbisanm×nmatrixofrankoneandisdefinedasabT.Nowletai
andbiTbethei-thcolumnandrowofAandBrespectively.ThentheproductCmayalsobeexpressedas
MatrixPre-andPost-Multiplication
Letusnowlookatsomefundamentalideasdistinguishingmatrixpre-andpost-multiplication.Inthisrespect,consideramatrixApre-multipliedbyBtogiveY=BA.(Allmatricesareassumedtohaveconformabledimensions).ThenwecaninterpretthismultiplicationasBoperatingonthecolumnofAtogivethecolumnsoftheproduct.ThisfollowsbecauseeachcolumnyioftheproductisatransformedversionofthecorrespondingcolumnofA;i.e.,yi
=Bai,i=1,2,…,n.Likewise,
let‘sconsiderApost-multipliedbyamatrixCtogiveX=AC.Then,weinterpretthismultiplicationasCoperatingontherowsofA,becauseeachrowXiToftheproductisatransformedversionofthecorrespondingrowofA;i.e.,XjT=ajTC,j=1,2,…,m,wherewedefineajTasthej-throwofA.
Example1:
ConsideranorthonormalmatrixQofappropriatedimension.Weknowthatmultiplicationbyanorthonormalmatrixresultsinarotationoperation.TheoperationQArotateseachcolumnofA.TheoperationAQrotateseachrow.
Thereisanotherwaytointerpretpre-multiplicationandpost-multiplication.AgainconsiderthematrixApre-multipliedbyBtogiveY=BA.Thenaccordingtoequation(1.1.2),thej-thcolumn
yiofYisalinearcombinationofthecolumnsofB,whosecoefficientsarethej-thcolumnofA.Likewise,forX=AB,wecansaythatthei-throwXiTofXisalinearcombinationoftherowsofB,whosecoefficientsarethei-throwofA.
Eitheroftheseinterpretationsisequallyvalid.Beingcomfortablewiththerepresentationsofthissectionisabigstepinmasteringthefieldoflinearalgebra.
1.1.3Fundamental
Linear
Algebra
Linear
Independence
Suppose
we
have
a
set
of
n
m-dimensional
vectors
{a1,a2,…,an},where
ai∈Rm,i=1,2,…,n.This
set
is
linearly
independent
under
the
conditions
Asetofnvectorsislinearlyindependentifann-dimensionalspacemaybefomedbytakingallpossiblelinearcombinationsofthevectors.Ifthedimensionofthespaceislessthann,thenthevectorsarelinearlydependent.Theconceptofavectorspaceandthedimensionofavectorspaceismademorepreciselater.
Notethatasetofvectors{a1,a2,…,an},wheren>mcannotbelinearlyindependent.
Example2:
Thissetislinearlyindependent.Ontheotherhand,thesetisnot.
Thisfollowsbecausethethirdcolumnisalinearcombinationofthefirsttwo.-1timesthefirstcolumnplus--1timesthesecondequalsthethirdcolumn.Thus,thecoefficientscjinequation(1.1.4)resultinginzeroareanyscalarmultipleofequation(1.1.1).
Span,RangeandSubspaces
Span
Thespanofavectorset[a1,a2,…,an],writtenasspan[a1,a2,…,an],whereai∈Rm,isthesetofpointsmappedby
Thesetofvectorsinaspanisreferredtoasavectorspace.Thedimensionofavectorspaceisthenumberoflinearlyindependentvectorsinthelinearcombinationwhichformsthespace.Notethatthevectorspacedimensionisnotthedimension(length)ofthevectorsformingthelinearcombinations.
Example3:
Considerthefollowing2vectorsinFig.1.1.Fig.1.1The
span
of
the
sevectors
is
the
(infinite
extension
of
the)plane
of
the
paper
Subspaces
Givenaset(space)ofvectors[a1,a2,…,an]∈Rm,m≥n,asubspaceSisavectorsubsetthatsatisfiestworequirements:
1.Ifx
andyareinthesubspace,thenx+yisstillinthesubspace.
2.Ifwemultiplyanyvectorxinthesubspacebyascalarc,thencxisstillinthesubspace.
Range
TherangeofamatrixA∈Rm×n,denotedR(A),isasubspace(setofvectors)satisfying
Example4:
R(A)isthesetofalllinearcombinationsofanytwocolumnsofA.Inthecasewhenn<m(i.e.,Aisatallmatrix),itisimportanttonotethatR(A)isindeedasubspaceofthem-dimensional“universe”Rm.Inthiscase,thedimensionofR(A)islessthanorequalton.Thus,R(A)doesnotspanthewholeuniverse,andthereforeisasubspaceofit.
MaximallyIndependentSet
Thisisavectorsetwhichcannotbemadelargerwithoutlosingindependence,andsmallerwithoutremainingmaximal;i.e.itisasetcontainingthemaximumnumberofindependentvectorsspanningthespace.
ABasis
Abasisforasubspaceisanymaximallyindependentsetwithinthesubspace.Itisnotunique.
Example5:
AbasisforthesubspaceSspanningthefirst2columnsof
is
OrthogonalComplementSubspace
IfwehaveasubspaceSofdimensionnconsistingofvectors[a1,a2,…,an],ai∈Rm,i=1,2,…,n,forn≤m,theorthogonalcomplementsubspaceS⊥ofSofdimensionm-nisdefinedas
i.e.,anyvectorinS⊥isorthogonaltoanyvectorinS.ThequantityS⊥
ispronounced“S-prep”.
Example6:
TakethevectorsetdefiningSfromExample5:
then,abasisforS⊥is
Rank
Rankisanimportantconceptwhichwewillusefrequentlythroughoutthiscourse.Webrieflydescribeonlyafewbasicfeaturesofrankhere.Theideaisexpandedmorefullyinthefollowingsections.
1.Therankofamatrixisthemaximumnumberoflinearlyindependentrowsorcolumns.Thus,itisthedimensionofabasisforthecolumns(rows)ofamatrix.
2.RankofA(denotedrank(A)),isthedimensionofR(A).
3.IfA=BC,andr1=rank(B),r2=rank(C),then,rank(A)≤min(r1,r2).
4.AmatrixA∈Rm×nissaidtoberankdeficientifitsrankislessthanmin(m,n)Otherwise,itissaidtobefullrank.
5.IfAissquareandrankdeficient,thendet(A)=0.
6.Itcanbeshownthatrank(A)=rank(AT).Moreissaidonthispointlater.
Example7:
TherankofAinExample6is3,whereastherankofAinExample4is2.
NullSpaceofA
ThenullspaceN(A)ofAisdefinxedas
Example8:
LetAbeasbeforeinExample4.ThenN(A)=c(1,1,-2)T,wherecisarealconstant.
Afurtherexampleisasfollows.Take3vectors[a1,a2,a3],whereai∈R3,i=1,2,3,thatareconstrainedtolieina2-dimensionalplane.Thenthereexistsazerolinearcombinationofthesevectors.ThecoefficientsofthislinearcombinationdefineavectorxwhichisinthenullspaceofA=[a1,a2,a3
].Inthiscase,weseethatAisrankdeficient.
Anotherimportantcharacterizationofamatrixisitsnullity.ThenullityofAisthedimensionofthenullspaceofA.InExample8above,thenullityofAisone.Wethenhavethefollowinginterestingproperty:
1.1.4Four
Fundamental
Subspaces
of
a
Matrix
The
four
matrix
subspaces
of
concern
are:
the
column
space,
the
row
space,
and
theirrespective
orthogonal
complements.
The
development
of
these
four
subspaces
is
closelylinked
to
N(A)
and
R(A).
We
assume
for
this
section
that
A∈Rm×n,
r≤min(m,n),where
r
=rank
(A).
TheColumnSpace
ThisissimplyR(A).Itsdimensionisr.ItisthesetofalllinearcombinationsofthecolumnsofA.
TheOrthogonalComplementoftheColumnSpace
ThismaybeexpressedasR(A)⊥,withdimensionm-r.ItmaybeshowntobeequivalenttoN(AT),asfollows:Bydefinition,N(AT)isthesetxsatisfying:
TheRowSpace
TherowspaceisdefinedsimplyasR(AΤ),withdimensionr.TherowspaceistherangeoftherowsofA,orthesubspacespannedbytherows,orthesetofallpossiblelinearcombinationsoftherowsofA.
TheOrthogonalComplementoftheRowSpace
ThismaybedenotedasR(AΤ)⊥.Itsdimensionisn-r.ThissetmustbethatwhichisorthogonaltoallrowsofA:i.e.,forxtobeinthisspace,xmustsatisfy
Thus,thesetx,whichistheorthogonalcomplementoftherowspacesatisfyingequation(1.1.16),issimplyN(A).
Wehavenotedbeforethatrank(A)=rank(AT).Thus,thedimensionoftherowandcolumnsubspacesareequal.Thisissurprising,becauseitimpliesthenumberoflinearlyindependentrowsofamatrixisthesameasthenumberoflinearlyindependentcolumns.Thisholdsregardlessofthesizeorrankofthematrix.Itisnotanintuitivelyobviousfactandthereisnoimmediatelyobviousreasonwhythisshouldbeso.Nevertheless,therankofamatrixisthenumberofindependentrowsorcolumns.
1.1.5Vector
Norms
A
vector
norm
is
a
means
of
expressing
the
length
or
distance
associated
with
avector.A
norm
on
a
vector
space
Rn
is
a
function
f,which
maps
a
point
in
Rninto
a
point
in
R.Formally,thisisstatedmathematicallyasf:
Wedenotethefunctionf(x)as‖x‖.Thep-norms:Thisisausefulclassofnorms,generalizingontheideaoftheEuclideannorm.Theyaredefinedby
Ifp=1:
which
is
simply
the
sum
of
absolute
values
of
the
elements.
If
p=2:
which
is
the
familiar
Euclidean
norm.
If
p=∞:
whichisthelargestelementofx.Thismaybeshowninthefollowingway.Asp→∞,thelargesttermwithintheroundbracketsinequation(1.1.17)dominatesalltheothers.Thereforeequation(1.1.17)maybewrittenas
1.1.6Determinants
Consider
a
square
matrix
A∈Rm×m.We
can
define
the
matrix
Aij
as
the
submatrixobtained
from
Aby
deleting
the
i-th
row
and
j-th
column
of
A.The
scalar
number
det(Aij)
(wheredet
(·)
denotes
determinant)
is
called
the
minor
associated
with
the
elementaij
of
A.The
signed
minor
cij(-1)j+i
det
(Aij)
is
called
the
cofactor
of
aij.
ThedeterminantofAisthem-dimensionalvolumecontainedwithinthecolumns(rows)ofA.Thisinterpretationofdeterminantisveryusefulasweseeshortly.Thedeterminantofamatrixmaybeevaluatedbytheexpression
1.1.7Properties
of
Determinants
Before
we
begin
this
discussion,
let
us
define
the
volume
of
a
parallelopiped
definedby
the
set
of
column
vectors
comprising
a
matrix
as
the
principal
volume
of
that
matrix.We
have
the
following
properties
of
determinants,
which
are
stated
with
outproof:
1.det(AB)=det(A)det(B)A,B∈Rm×m.
2.det(A)=det(AT).
3.det(cA)=cmdet(A),c∈R,A∈Rm×m.
4.det(A)=0⇔Aissingular.
5.det(A)=,whereλiaretheeigen(singular)valuesofA.
6.Thedeterminantofanorthonormalmatrixis±1.
7.IfAisnonsingular,thendet(A-1)=[det(A)]-1.
8.IfBisnonsingular,thendet(B-1AB)=det(A).
9.IfBisobtainedfromAbyinterchanginganytworows(orcolumns),thendet(B)=-det(A).
10.IfBisobtainedfromAbybyaddingascalarmultipleofonerowtoanother(orascalarmultipleofonecolumntoanother),thendet(B)=det(A).
1.2The
Most
Basic
Matrix
Decomposition
1.2.1GaussianElimination
In
this
section
we
discuss
the
concept
of
Gaussian
elimination
in
some
detail.
ButwepresentaveryquickreviewbyexampleoftheelementaryapproachtoGaussianelimination.
Given
the
system
of
equations
WhereA∈R3×3isnonsingular.Theabovesystemcanbeexpandedintotheform.
TosolvethesystemwetransformthissystemintothefollowinguppertriangularsystembyGaussianelimination:
using
a
sequence
of
elementary
row
operations
as
follows
OnceAhasbeentriangularized,thesolutionxisobtainedbyapplyingbackwardsubstitutiontothesystemUx=b.Withthisprocedurexnisfirstdeterminedfromthelastequationof(1.2.3).Thenxn-1maybedeterminedfromthesecondlastrow,etc.Thealgorithmmaybesummarizedbythefollowingschema:
WhatabouttheAccuracyofBackSubstitution?
Withoperationsonfloatingpointnumberswemustbeconcernedabouttheaccuracyoftheresultsincethefloatingpointnumbersthemselvescontainerror.Wewanttoknowifitispossiblethatthesmallerrorsinthefloatingpointrepresentationofrealnumberscanleadtolargeerrorsinthecomputedresult.Inthisvien,wecanshowthatthecomputedsolutionx^obtainedbybacksubtitutionsatisfiestheexpression.
1.2.2The
LU
Decomposition
Suppose
we
canfind
a
lower
triangularmatrix
L∈Rn×n
with
ones
along
themaindiagonal
and
an
upper
triangular
matrix
U∈Rn×n
such
that:
This
decomposition
of
A
is
referred
to
as
the
LU
decomposition.
To
solve
the
systemAx=b,or
LUx=bwe
define
the
variable
z
as
z=Ux
and
then
1.2.3The
LDM
Factorization
If
no
zero
pivots
are
encountered
during
the
Gaussian
elimination
process,
then
thereexist
unit
lower
triangular
matrices
L
and
Mand
a
diagonal
matrix
D
such
that
Justification
SinceA=LUexists,letU=DMTbeuppertriangular,wheredi=uii;hence,A=LDMTwhichwastobeshown.EachrowofMTisthecorrespondingrowofUdividedbyitsdiagonalelement.
WethensolvethesystemAx=bwhichisequivalenttoLDMTx=binthreesteps:
1.lety=DMTxandsolveLy=Pr(n2flops)
2.lety=MTxandsolveDz=y(nflops)
3.solveMTx=z(n2flops)
1.2.4The
LDL
Decomposition
for
Symmetric
Matrices
For
a
symmetric
non-singular
matrix
A∈Rn×n,
the
factors
L
and
Mareidentical.
Proof
LetA=LDMT.The
matrix
M-1AM-T=M-1LD
is
symmetric
(from
lef
than
dside)and
lower
triangular(from
righ
than
dside).
Hence,they
are
both
diagonal.
But
Disnonsingular,
soM-1Lis
alsodia
gonal.ThematricesMand
Lare
bothunit
lowertriangular
(ULT).It
can
be
easily
shown
that
the
inverse
of
aULT’s
matrix
is
also
ULT,and
furthermore,the
product
o
ULT’s
is
ULT.Therefore
M-1
is
ULT,and
sois
M-1L.ThusM-1L=I;M=L.
1.2.5Cholesky
Decomposition
We
now
consider
several
modifications
to
the
LUdecomposition,
which
ultimatelyleaduptotheCholeskydecomposition.Thesemodificationsare1)theLDMdecomposition,
2)
theLDLdecompositiononsymmetricmatrices,
and
3)theLDLdecomposition
on
positive
definite
symmetricmatrices.The
Cholesky
decomposition
isrelevant
only
for
square
symmetric
positive
definite
matrices
and
is
an
important
concent
insignal
processing.
Several
examples
of
the
useof
the
Cholesky
decomposition
are
providedat
the
end
of
the
section
ForA∈Rn×n
symmetricandpositivedefinite,thereexistsalowertriangularmatrixG∈Rn×nwithpositivediagonalentries,suchthatA=GGT.
1.2.6Applications
and
Examples
of
the
Cholesky
Decomposition
Generating
Vector
Processes
with
Desired
Covariance
We
may
use
the
Cholesky
decomposition
to
generate
a
random
vector
process
with
adesired
covariance
matrix
Σ∈Rn×n.Since
must
be
symmetric
and
positive
definite,let
WhiteningaProcess
Thisexampleisessentiallytheinverseoftheonejustdiscussed.Supposewehaveastationaryvectorprocessxi
∈Rn,i=1,2,…,n.Thisprocesscouldbethesignalsreceivedfromtheelementsofanarrayofnsensors,itcouldbesetsofnsequentialsamplesofanytime-varyingsignal,orsetsofdatainatapped-delaylineequalizeroflengthn,attimeinstantst1,t2,…,etc.Lettheprocessxconsistofasignalpartsiandanoisepartvi:
Sincethereceivedsignalx=s+v,thejointprobabilitydensityfunctionp(x|s)ofthereceivedsignalvectorx,giventhenoiselesssignals,inthepresenceofGaussiannoisesamplesvwithcovariancematrixΣissimplythepdfofthenoiseitself,andisgivenbythemulti-dimensionalGaussianprobabilitydensityfunctiondiscussedinSection1.2.1:
1.2.7Eigendecomposition
Eigenvaluedecompositionistodecomposeamatrixintothefollowingform:
WhereQistheeigenvectorofthismatrixA,andtheorthogonalmatrixisinvertible.Σ=diag(λ1,λ2,…,λn)isadiagonalarraywitheachdiagonalelementbeinganeigenvalue.
Eigenvalues
and
Eigenvectors
Suppose
we
have
a
matrix
A:
We
investigate
its
eigenvalues
and
eigenvectors.
Suppose
we
take
the
product
Ax1,where
x1=[0,1]T,
as
show
nin
Fig.1.2.
Example1:
Considerthematrixgivenby
Itmaybeeasilyverifiedthatanyvectorinspan[e2,e3]isaneigenvectorassociatedwiththezerorepeatedeigenvalue.
Property1
IftheeigenvaluesofaHermitiansymmetricmatrixaredistinct,thentheeigenvectorsareorthogona.
Property5
IfvisaneigenvectorofamatrixA,thencvisalsoaneigenvector,wherecisanyrealorcomplexconstant.
TheprooffollowsdirectlybysubstitutingcvforvinAv=λv.Thismeansthatonlythedirectionofaneigenvectorcanbeunique;itsnormisnotunique.
OrthonormalMatrices
Beforeproceedingwiththeeigendecompositionofamatrix,wemustdeveloptheconceptofanorthonormalmatrix.Thisformofmatrixhasmutuallyorthogonalcolumns,eachofunitnorm.Thisimpliesthat
Whereδij
istheKroneckerdelta,andqiandqjarecolumnsoftheorthonormalmatrixQ.Withinmind,wenowconsidertheproductQTQ.Theresultmaybevisualizedwiththeaidofthediagrambelow:
Equation(1.2.32)followsdirectlyfromthefactQhasorthonormalcolumns.ItisnotsoclearthatthequantityQQTshouldalsoequaltheidentity.Wecanresolvethisquestioninthefollowingway.SupposethatAandBareanytwosquareinvertiblematricessuchthatAΒ=I.Then,ΒAΒ=Β.Byparsingthislastexpression,wehave
Property6
Thevector2-normisinvariantunderanorthonormaltransformation.
IfQisorthonormal,then
TheEigendecomposition(ED)ofaSquareSymmetricMatrix
AlmostallmatricesonwhichEDareperformed(atleastinsignalprocessing)aresymmetric.Agoodexampleiscovariancematrices,whicharediscussedinsomedetailinthenextsection。
LetA∈Rn×n
besymmetric.Then,foreigenvaluesandeigenvectorsvi,wehave
Lettheeigenvectorsbenormalizedtounit2-norm.Thenthesenequationscanbecombined,orstackedside-by-sidetogether,andrepresentedinthefollowingcompactform:
WhereV=[v1,v2,…,vn](i.e.,eachcolumnofVisaneigenvector),and
Correspondingcolumnsfromeachsideofrepresentonespecificvalueoftheindexiin.BecausewehaveassumedAissymmetric,fromProperty1,theviareorthogonal.Furthermore,sincewehaveassumed‖vi‖2=1,Visanorthonormalmatrix.Thus,post-multiplyingbothsidesofbyVTandusingVVT=Iweget
Matrixp-Norms
Amatrixp-normisdefinedintermsofavectorp-norm.Thematrixp-normofanarbitrarymatrixA,denoted‖A‖p,isdefinedas
where“sup”means
supremum;
i.e,.the
largest
value
of
the
argument
over
all
values
of
x≠0.Sinceapropertyofavectornormis‖cx‖p=c‖x‖pforanyscalarc,wecanchoosecinequation(1.2.40)sothat‖x‖p=1.Then,anequivalentstatementtoequation(1.2.40)is
FrobeniusNorm
TheFrobeniusnormisthe2-normofthevectorconsistingofthe2-normsoftherows(orcolumns)ofthematrixA:
PropertiesofMatrixNorms
1.ConsiderthematrixA∈Rm×nandthevectorx∈Rn.Then,
Thispropertyfollowsbydividingbothsidesoftheaboveby‖x‖p,andapplying.
2.IfQandZareorthonormalmatricesofappropriatesize,then
and
Thus,weseethatthematrix2-normandFrobeniusnormareinvarianttopre-andpost-multiplicationbyanorthonormalmatrix.
3.Further
Wheretr(·)denotesthetraceofamatrix,whichisthesumofitsdiagonalelements.
1.2.9Covariance
Matrices
Here,we
investigate
the
concepts
andpropertiesof
the
covariancematrix
Rxxcorresponding
to
a
stationary,
discrete-time
random
process
x[n].We
break
the
infinitesequence
x[n]
into
windows
of
lengthm
,
as
shown
in
Fig.1.3.
The
windows
generallyoverlap;
in
fact,they
are
typically
displaced
fromone
another
by
only
one
sample.Thesamples
with
in
the
i-th
window
become
an
m-length
vector
xi,i=1,2,…,n.
Hence,
thevector
corresponding
to
each
window
is
a
vector
sample
from
the
random
process
x[n].
Processing
randomsignals
in
this
way
is
the
fundamental
first
step
inmany
forms
ofelectronic
systemwhich
deal
with
real
signals,
such
as
process
identifi
cation,control,
orany
form
of
communication
system
including
telephones,
radio,
radar,
sonar,
etc.
ThecovariancematrixRxx∈Rm×mcorrespondingtoastationaryorWSSprocessx[n]isdefinedas
WhereμisthevectormeanoftheprocessandE(·)denotestheexpectationoperatoroverallpossiblewindowsofindexioflengthminFig.1.3.Oftenwedealwithzero-meanprocesses,inwhichcasewehave
However,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB23-T2968-2021-大棚中果型西瓜栽培技术规程-黑龙江省
- DB23-T2946-2021-樱花育苗技术规程-黑龙江省
- 宿州小区门岗管理制度
- 培训机构用工管理制度
- 农场水管清理方案(3篇)
- 乙炔气柜检修方案(3篇)
- 贸易企业审计方案(3篇)
- 密闭容器管道管理制度
- 初中教育机构管理制度
- 装修工人团建方案(3篇)
- 弱电智能化设计制图规范
- 大学体育 1(体育导论)学习通超星课后章节答案期末考试题库2023年
- 无创呼吸机使用技术操作评分标准
- 创新思维与创业实验-东南大学中国大学mooc课后章节答案期末考试题库2023年
- 浙江高等教育岗前培训考试题目-大学心理学1-20套
- 人教版五年级下数学周末练习题13(分数加减法)
- 挖掘机、装载机检验报告完整
- 2022下半年上海市英语模拟题【带答案】
- 抗菌药物临床应用指导原则(2023年版)
- 金蝶云星空 V7.2-产品培训-供应链-库存管理
- 国开电大专科《管理英语1》机考总题库
评论
0/150
提交评论